InfraFix: Technology-Agnostic Repair of Infrastructure as Code

Abstract

Infrastructure as Code (IaC) enables scalable and automated IT infrastructure management but is prone to errors that can lead to security vulnerabilities, outages, and data loss. While prior research has focused on detecting IaC issues, Automated Program Repair (APR) remains underexplored, largely due to the lack of suitable specifications.

In this work, we propose InfraFix, the first technology-agnostic framework for repairing IaC scripts. Unlike prior approaches, InfraFix allows APR techniques to be guided by diverse information sources. Additionally, we introduce a novel approach for generating repair scenarios, enabling large-scale evaluation of APR techniques for IaC. We implement and evaluate InfraFix using an SMT-based repair module and a state inference module that uses system calls, demonstrating its effectiveness across 254,755 repair scenarios with a success rate of 95.5%.

Our work provides a foundation for advancing APR in IaC by enabling researchers to experiment with new state inference and repair techniques using InfraFix and to evaluate their approaches at scale with our repair scenario generation method.

Publication
International Symposium on Software Testing and Analysis (ISSTA), 2025, Tool Demonstrations Track
Ranking
CORE A conference

Avatar
Computer Scientist

My research interests include software reliability, software verification, and formal methods applied to software engineering. I am also interested in interactive storytelling. For more details, see some of my projects or my selected (or recent) publications. More posts are available in my blog. Follow me on Twitter or add me on LinkedIn.