
How are Contracts Used in Android Mobile Applications?
David R. Ferreira

Faculty of Engineering, University of
Porto

Porto, Portugal
david.regatia@gmail.com

Alexandra Mendes
HASLab / INESC TEC & Faculty of
Engineering, University of Porto

Porto, Portugal
alexandra@archimendes.com

João F. Ferreira
INESC-ID & IST, University of Lisbon

Lisbon, Portugal
joao@joaoff.com

ABSTRACT
Formal contracts and assertions are effective methods to enhance
software quality by enforcing preconditions, postconditions, and
invariants. However, the adoption and impact of contracts in the
context of mobile application development, particularly of Android
applications, remain unexplored. We present the first large-scale
empirical study on the presence and use of contracts in Android
applications, written in Java or Kotlin. We consider 2,390 applica-
tions and five categories of contract elements: conditional runtime
exceptions, APIs, annotations, assertions, and other. We show that
most contracts are annotation-based and are concentrated in a small
number of applications.

CCS CONCEPTS
• General and reference → Empirical studies; Reliability; •
Software and its engineering→ Software evolution.

KEYWORDS
design by contract, Android, assertions, Kotlin, Java
ACM Reference Format:
David R. Ferreira, Alexandra Mendes, and João F. Ferreira. 2024. How are
Contracts Used in Android Mobile Applications?. In 2024 IEEE/ACM 46th
International Conference on Software Engineering: Companion Proceedings
(ICSE-Companion ’24), April 14–20, 2024, Lisbon, Portugal. ACM, New York,
NY, USA, 2 pages. https://doi.org/10.1145/3639478.3643536

1 INTRODUCTION
Data from 2023 shows that Android represents approximately 43%
of the overall operative system market share [10]. Therefore, faults
in Android apps can impact a very large number of users. Also, with
an increasing number of apps in critical areas such as health and
finance, faults can have a huge negative impact. It is thus important
to use software reliability techniques when developing these apps.

One of these techniques is Design by Contract (DbC) [6], un-
der which software systems are seen as components that interact
amongst themselves based on precisely defined specifications of
client-supplier obligations (contracts). Many have advocated DbC as
an efficient technique to aid the identification of failures, improve
code understanding, and improve testing efforts, which directly or
indirectly contribute to more reliable software. This has led to a

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICSE-Companion ’24, April 14–20, 2024, Lisbon, Portugal
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0502-1/24/04.
https://doi.org/10.1145/3639478.3643536

Table 1: Contract elements considered in this study

category examples

CREs AccessControlException, IndexOutOfBoundsException,
(74 constructs) IllegalArgumentException, EmptyStackException, . . .

APIs org.apache.commons.lang.Validate.*
(31 constructs) org.apache.commons.lang3.Validate.*

com.google.common.base.Preconditions.*

Assertions assert (Java), assert (Kotlin)
(6 constructs) check(), checkNotNull() (Kotlin)

require(), requireNotNull() (Kotlin)

Annotations org.jetbrains.annotations.*
(136 constructs) edu.umd.cs.findbugs.annotations.*

android.annotation.*
androidx.annotation.*
javax.annotation.* (JSR305)

Other @ExperimentalContracts (Kotlin)
(1 construct)

number of empirical studies on the use of contracts in a variety of
contexts [1–3, 5, 9]. However, there are no previous studies on the
presence and usage of contracts in Android applications nor any study
that includes the Kotlin language.

In this extended abstract, we present the first large-scale empiri-
cal study of contract usage in Android mobile applications written
in Java or Kotlin. A longer version of this abstract presents more
findings and considers evolution and safe usage of contracts [4].

2 CONTRACTS IN ANDROID APPLICATIONS
Our notion of contract follows from the theory of design by con-
tract [6], where preconditions, postconditions, and invariants are
used to document (and specify) state changes that might occur in
a program. Preconditions and postconditions are associated with
methods and constrain their input and output values. Invariants
are associated with classes and properties and constrain all the
public methods in a given class. Preconditions represent the expec-
tations of the contract, and postconditions represent its guarantees.
Invariants represent the conditions that the contract maintains.

Java and Kotlin do not provide a native and standardized ap-
proach for contract specification, but developers can take advan-
tage of language features and libraries to specify preconditions,
postconditions, and class invariants in both languages. Similar to
Dietrich et al. [2], we group these constructs into five categories:
conditional runtime exceptions (CREs), APIs, annotations, asser-
tions, and other. Since we focus on Android applications, we include
contract elements that are specifically used by Android developers
(e.g., Android annotations and specific Android runtime exceptions).
Table 1 summarizes the classification and provides some examples;
we consider a total of 248 constructs.

https://doi.org/10.1145/3639478.3643536
https://doi.org/10.1145/3639478.3643536


ICSE-Companion ’24, April 14–20, 2024, Lisbon, Portugal Ferreira et al.

Table 2: Number of contracts by construct and category.

Construct Category Java Contracts Kotlin Contracts

cond. runtime exc. CRE 14,887 2,071
unsupp. op. exc. CRE 308 116

java assert assertion 2,217 -
kotlin assert assertion - 2,370

guava precond. API 1,121 9
commons validate API 3 0

spring assert API 1 0
JSR303, JSR349 annotation 0 0

JSR305 annotation 2,133 13
findbugs annotation 0 0
jetbrains annotation 1,596 98
android annotation 7,013 3,414
androidx annotation 86,212 13,811

kotlin contracts others - 1

3 DATASET
The dataset used is composed of real-world applications obtained
from F-droid1, written in Java or Kotlin.We consider all applications
for which 1) the source code is hosted in GitHub; 2) the source code
is either Java or Kotlin; 3) the GitHub project is not archived; 4) the
GitHub project has had a commit since 2018.We clone all the Github
projects. Every file that is neither Java nor Kotlin is removed from the
dataset. From the initial list of 4,070 projects in the F-Droid index
retrieved on May 21, 2023, we got 3,215 hosted in GitHub, 3,141
non-duplicated, and 2,390 projects after filtering by the inclusion
criteria. Out of these, 1,767 are Java applications and 623 are Kotlin.

4 RESULTS

Table 3: Gini coefficient
by category.

Category Java Kotlin

assertion 0.70 0.71
API 0.80 0.37

annotation 0.88 0.76
CRE 0.77 0.67
others - 1.00

Table 2 shows the frequency of each
construct. Annotations are the most
popular category (this aligns with
literature that supports annotations
increasing popularity [12]). We also
note that while Java’s second most
popular category is CREs, in Kotlin,
it is assertions. This is explained by
the inclusion of the four language’s
standard library methods listed in Ta-
ble 1, where require() alone counts 901 total occurrences.

Finding 1: Most contracts are annotation-based, accounting for
88.31% in Java and 77.44% in Kotlin of the total of contracts found.

Table 2 also shows that the usage of APIs is very low in both
languages, especially in Kotlin, where only nine instances were
found. The known industry skepticism around adding third-party
dependencies to projects, which may lead to maintainability and
support issues in the future, may explain this finding [11].

Finding 2: The use of APIs to specify contracts is very rare.

Table 3 presents each category’sGini coefficient. AGini coefficient
of 0means that all applications have the same number of contracts; a
Gini coefficient of 1 means that a single program has all the contracts.
All coefficients in the table are higher than 0.50, except for Kotlin’s
1https://f-droid.org (accessed 6 June 2023)

API usage. Almost all coefficients are high, meaning that although
some applications use contracts intensively, the majority do not
use them significantly. This aligns with Dietrich et al.’s results [2].

Finding 3: Although some applications use contracts intensively,
the majority do not use them significantly.

5 CONCLUSION
Contracts are concentrated in a small number of applications. Still,
when applications use contracts, annotation-based approaches are
the most frequent, with the androidx.annotation package being the
most popular. The use of APIs to specify contracts is rare. A longer
version of this extended abstract presents additional findings and
considers evolution and safe usage of contracts [4]. Future work
includes the use of annotations to improve Android analysis tools
[7, 8], and the development of tools that can help increase the
adoption of DbC [13].

ACKNOWLEDGMENTS
This work is financed by National Funds through the Portuguese
funding agency, FCT - Fundação para a Ciência e a Tecnologia,
within project UIDB/50021/2020 (DOI:10.54499/UIDB/50021/2020)
and project LA/P/0063/2020, DOI 10.54499/LA/P/0063/2020 |
https://doi.org/10.54499/LA/P/0063/2020.

REFERENCES
[1] C. Casalnuovo, P. Devanbu, A. Oliveira, V. Filkov, and B. Ray. 2015. Assert Use in

GitHub Projects. In 2015 IEEE/ACM 37th IEEE International Conference on Software
Engineering (ICSE). Proceedings, Vol. 1. Los Alamitos, CA, USA.

[2] J. Dietrich, D. J. Pearce, K. Jezek, and P. Brada. 2017. Contracts in theWild: A Study
of Java Programs. In 31st European Conference on Object-Oriented Programming
(ECOOP 2017) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 74).
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany.

[3] H.-C. Estler, C. A. Furia, M. Nordio, M. Piccioni, and B. Meyer. 2014. Contracts in
Practice. In FM 2014: Formal Methods. 19th International Symposium. Proceedings:
LNCS 8442. Cham, Switzerland, 230 – 46.

[4] David R. Ferreira, Alexandra Mendes, and João F. Ferreira. 2024. Contract Usage
and Evolution in Android Mobile Applications. arXiv:2401.14244 [cs.SE]

[5] P. Kochhar and D. Lo. 2017. Revisiting Assert Use in GitHub Projects. In Proceed-
ings of the 21st International Conference on Evaluation and Assessment in Software
Engineering. 298–307.

[6] B. Meyer. 1992. Applying ‘design by contract’. Computer 25, 10 (1992), 40 – 51.
[7] Ricardo B Pereira, João F. Ferreira, Alexandra Mendes, and Rui Abreu. 2022.

Extending Ecoandroid with automated detection of resource leaks. In Proceedings
of the 9th IEEE/ACM International Conference on Mobile Software Engineering and
Systems. 17–27.

[8] Ana Ribeiro, João F. Ferreira, and Alexandra Mendes. 2021. Ecoandroid: An
Android studio plugin for developing energy-efficient Java mobile applications.
In 2021 IEEE 21st International Conference on Software Quality, Reliability and
Security (QRS). IEEE, 62–69.

[9] T. W. Schiller, K. Donohue, F. Coward, and M. D. Ernst. 2014. Case Studies
and Tools for Contract Specifications. In Proceedings of the 36th International
Conference on Software Engineering (Hyderabad, India) (ICSE 2014). Association
for Computing Machinery, New York, NY, USA, 596–607.

[10] StatCounter Global Stats. 2023. Operating System Market Share Worldwide.
https://gs.statcounter.com/os-market-share#monthly-202208-202209-bar [On-
line; accessed 3-February-2023].

[11] Y. Wang, B. Chen, K. Huang, B. Shi, C. Xu, X. Peng, Y. Wu, and Y. Liu. 2020.
An Empirical Study of Usages, Updates and Risks of Third-Party Libraries in
Java Projects. In 2020 IEEE International Conference on Software Maintenance and
Evolution (ICSME). 35–45.

[12] Z. Yu, C. Bai, L. Seinturier, and M. Monperrus. 2021. Characterizing the Usage,
Evolution and Impact of Java Annotations in Practice. IEEE Transactions on
Software Engineering 47, 5 (2021), 969–986.

[13] Álvaro Silva, Alexandra Mendes, and João F. Ferreira. 2024. Leveraging Large Lan-
guage Models to Boost Dafny’s Developers Productivity. arXiv:2401.00963 [cs.SE]

https://f-droid.org
https://arxiv.org/abs/2401.14244
https://gs.statcounter.com/os-market-share#monthly-202208-202209-bar
https://arxiv.org/abs/2401.00963

	Abstract
	1 Introduction
	2 Contracts in Android Applications
	3 Dataset
	4 Results
	5 Conclusion
	Acknowledgments
	References

