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ABSTRACT

Proof assistants enable users to develop machine-checked proofs

regarding software-related properties. Unfortunately, the interac-

tive nature of these proof assistants imposes most of the proof

burden on the user, making formal veri�cation a complex, and

time-consuming endeavor. Recent automation techniques based on

neural methods address this issue, but require good programmatic

support for collecting data and interacting with proof assistants.

This paper presents CoqPyt, a Python tool for interacting with

the Coq proof assistant. CoqPyt improves on other Coq-related

tools by providing novel features, such as the extraction of rich

premise data. We expect our work to aid development of tools and

techniques, especially LLM-based, designed for proof synthesis and

repair. A video describing and demonstrating CoqPyt is available

at: https://youtu.be/fk74o0rePM8.
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1 INTRODUCTION

Formal software veri�cation is an incredibly e�ective method for

developing high quality software, as it ensures that a software pro-

gram adheres to a prede�ned formal speci�cation. For example,

a study compared industrial standard compilers (e.g., GCC and
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LLVM) to CompCert, a C compiler veri�ed using the Coq proof

assistant [25], and CompCert was the only one for which no bugs

were found [30]. Unfortunately, even though formal software veri-

�cation provides valuable guarantees, its development is still too

costly. CompCert took 100,000 lines of Coq code and 6 person-

years to formally verify [13]. For this reason, it is important to �nd

methods that decrease the cost of formal veri�cation.

One recent approach to address this is the use of neural methods

to automate proof synthesis. Neural theorem provers, given a partial

proof and the proof state, use neural networks to predict the next

likely proof steps. A proof assistant is then used to evaluate the

candidate proof steps, returning either new proof states or errors.

Neural theorem provers iterate on this procedure, performing proof

search to traverse the space of possible proofs. A complementary

task is automated proof repair [20], which is necessary to perform

when speci�cations or dependencies change and result in broken

proofs. To train these neural models and implement proof search,

su�cient programmatic support is thus required for collecting

training examples and driving the theorem prover.

In this paper, our target proof assistant is Coq due to its popu-

larity for building veri�ed software systems. Existing tools, such

as Coq Serapy [22] and PyCoq [9], provide programmatic support

for interacting with Coq in Python, and all current neural theorem

provers for Coq utilize them. These tools implement Python bind-

ings for Coq SerAPI [7], which is a library for machine-to-machine

interaction with Coq. However, with the announcement that Coq

SerAPI will be deprecated and replaced with Coq LSP [26], a lan-

guage server for Coq, the need arises for a new tool to continue

supporting existing features. Fortunately, this also creates a great

opportunity to support new features that prior tools did not.

In the emerging era of large language models (LLMs), additional

functionality is desirable in tools for interfacing with Coq in Python

in order to promote LLM-based approaches for Coq proof synthesis

and repair. Namely, the ability to collect rich contextual data is not

supported by any of the existing programmatic tools for control-

ling Coq. LLM-based neural theorem provers for Lean and Isabelle

proof assistants rely on retrieval augmentation, wherein they re-

trieve premises, such as lemmas and de�nitions, that are relevant

to the proof goal, and condition the next tactic generation on those

premises [17, 29]. For the approach to be e�ective, they collect �ne-

grained annotations of which premises are used in proofs as well

as which premises are accessible from a proof. However, existing

tools for Coq do not collect that type of premise data.

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.
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Step

text : String
ast : RangedSpan

CoqFile
steps : List[Step]
context : FileContext
is_valid : Bool

exec(nsteps) : List[Step]
add_step(index, text) : None
delete_step(index) : None
change_steps(changes) : None
save_vo() : None

1 *

ProofFile

proofs : List[ProofTerm]
open_proofs : List[ProofTerm]
current_goals : Optional[GoalAnswer]
in_proof : Bool

append_step(proof, text)  : None
pop_step(proof) : None
change_proof(proof, changes) : None

1
1 *

*

Term

step : Step
type : TermType

ProofTerm

steps : List[ProofStep]
context : List[Term]

ProofStep

goal : GoalAnswer
context : List[Term]

CoqChange

CoqAdd

index : Integer
text : String

CoqDelete

index : Integer

*1
FileContext

terms : Map[String, Term]
update(terms) : None

* *1 1

1
*

ProofChange

ProofAppend

text : String

ProofPop

* 1

Figure 1: UML diagram for a simpli�ed view of the domain of CoqPyt. The selected attributes and methods are all public.

We introduce CoqPyt, a tool that enables interaction with Coq

in Python using Coq LSP as the backend. CoqPyt continues to

support existing capabilities essential to training data collection

and proof search, but goes beyond state-of-the-art tools for Coq by

supporting the ability to collect rich contextual data, among other

novel features. Our tool supports the newest versions of Coq (8.17

to 8.19), which will facilitate mining software repositories for new,

enriched training and evaluation data.We foresee that our workwill

help promote future research into neural proof synthesis and repair

for Coq, especially as LLM capabilities continue to evolve. CoqPyt

is open-source and available at: https://github.com/sr-lab/coqpyt.

2 COQPYT

CoqPyt is a Python tool that enables developers and researchers to

interact programmatically with Coq. It also allows users to extract

textual and structural information from Coq �les. We now describe

the structure and main functionalities of CoqPyt, providing an

illustrative example on how to interact with the tool.

2.1 The Coq Proof Assistant

Coq provides an interactive environment with a rich type system

suitable for theorem proving. A theorem in Coq is a type de�nition,

which can be proven by constructing a proof term with the stated

theorem type. Since writing a proof term directly is di�cult, Coq

allows users to write a proof script consisting of a sequence of high-

level tactics (e.g., induction or re�exivity). Each tactic guides Coq in

a search for the desired proof term, re�ning the state until no new

obligations hold. After a tactic application, Coq displays the current

proof state, which includes the goals to prove and the local context.

When executed, a complete proof script generates the proof term.

2.2 Coq Language Server Protocol

To interact with Coq �les, we use Coq LSP [26], a language server

that provides Coq-related features. Coq LSP was developed to re-

place Coq SerAPI [7], a well-known tool in the Coq community

that implements a protocol for interacting speci�cally with Coq

�les. Unlike Coq SerAPI, Coq LSP follows a standardized protocol

for interacting with text documents known as Language Server

Protocol (LSP) [16]. LSP servers, such as Coq LSP, provide useful

language features, such as auto complete. Client applications, such

as IDEs, can use these features by running their own LSP client.

Besides the usual LSP features, Coq LSP provides Coq-speci�c

functionality, namely requesting the proof state at any given point

of a Coq �le. Coq LSP also allows users to request the abstract

syntax tree (AST) of the entire document, which corresponds to

a list of steps in the �le, each with its own AST representation. A

step can be a term de�nition (e.g., de�nitions and theorems) or a

proof step (e.g., mid-proof tactic application), determined by the AST

contents of each step. For erroneous Coq �les, Coq LSP is able to

ignore erroneous steps and evaluate the remaining steps of the �le,

allowing any subsequent non-erroneous steps to de�ne new terms.

Coq LSP also enables project-wise imports by saving compiled .vo

�les, which may also bene�t from this error-ignoring approach,

given that valid �les may still import terms from invalid �les.

2.3 Interaction with Coq Files

CoqPyt implements a client for Coq LSP providing the interface

shown in Figure 1. This client implementation is encapsulated

within CoqFile, a class that abstracts the state of an actual Coq �le,

hiding the interaction with Coq LSP. For instance, the is_valid

boolean �ag indicates if the underlying Coq �le is valid and the

save_vo method allows the user to compile the �le.

A CoqFile object provides an exec method which allows users

to take an arbirary number of forward and backward steps through

the �le. The method returns a list of Steps corresponding to the

steps that were executed or backtracked during the call. Each step

contains its textual representation in the �le and the AST contents.

Given that steps may be term de�nitions, a FileContext object

is kept within the CoqFile, indexing by name all terms that have

been de�ned until the last executed step. Any term de�ned inside

a module has its name pre�xed by the module path. Although

notations are nameless terms, these are also stored in the context,

indexed by the string pattern used to de�ne them. For each de�ned

term, a Term object is created containing its corresponding step, as

well as its term type. This type depends on whether the term is a

theorem, a notation, a tactic or any other de�nable Coq construct.

2.4 Proof Navigation

With CoqPyt, it is also possible to track the proof state throughout

the �le. A CoqFile can be instantiated through the ProofFile

subclass, which allows users to manage the �le’s proof context.

As steps are taken, one can enter (or leave) proof mode, which

will activate (or deactivate) the in_proof boolean �ag. If there are

any on-going goals, these can be accessed via the current_goals

attribute. Goals are represented as a GoalAnswer object, which

mimics the structure of goals in the Coq LSP response [26].

In addition to allowing users to manage a �le’s proof context,

ProofFile instances also fetch all of the �le’s imported terms. Thus,

a ProofFile captures terms in a �le and in its dependencies. In

practice, the ProofFile context is initialized by instantiating a

CoqFile for each library imported by the �le and extracting the

context of each library to the new ProofFile instance. Since cre-

ating a ProofFile requires instantiating multiple CoqFiles, it is

more expensive to create a ProofFile than a CoqFile.
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A ProofFile holds information about all proofs found in the

�le until the last executed step. Proofs with open goals are kept in

the open_proofs attribute. Multiple open proofs occur in �les with

nested proofs, as we need to open inner proofs before closing outer

proofs. Each proof is a ProofTerm, a Termwith a context attribute,

listing all terms found in the current context used to de�ne the

proof term. This contextual information is valuable for neural-based

models and is not accessible from prior Coq-related tools.

A ProofTerm also contains an ordered list of ProofSteps, corre-

sponding to all steps taken until the proof is closed (or until the last

executed step if the proof is open). The ProofStep class enables a

mapping from each proof step to the intermediate proof goals it

attempts to solve or simplify. A ProofStep is thus constructed by

augmenting the respective Step with the intermediate proof goals

before that step is taken. Similarly to ProofTerm, a ProofStep also

has a context attribute listing the terms used in the step.

2.5 Proof Modi�cation

CoqPyt allows steps to be added to or deleted from the �le. Allowing

such modi�cations on Coq �les yields an interface well suited for

proof development. Invalid changes, such as adding inexisting tac-

tics, may lead to explicit errors or unde�ned behaviour, depending

on the nature of the error. For erroneous modi�cations, the �le will

revert to its original state, ignoring the requested changes.

Through the add_step method, it is possible to de�ne terms,

introduce theorems and apply tactics to solve proof obligations.

Conversely, delete_step enables the removal of steps, such as

added tactics which do not alter the proof goals as intended. Both

methods allow editing in arbitrary parts of the �le: delete_step

requires an index i to delete the ith step in the �le; add_step

requires the index of the step which precedes the new step. To add

a new step, its textual representation must also be provided.

Modi�cations may also be batched as transactions. A sequence of

CoqChanges can be provided to the change_steps method, which

will perform all modi�cations. A CoqChange can be either a CoqAdd

or a CoqDelete, which serve as data wrappers for the parameters of

add_step and delete_step, respectively. During the transaction,

intermediate invalid states are allowed as long as the �nal state is

valid. For example, it is possible to add a Qed before adding the actual

proof steps, which cannot be done through successive add_step

calls. To directly modify a proof, ProofFile provides the methods

append_step and pop_step for single step modi�cations, as well

as a change_proof method for a transaction of ProofChanges.

2.6 Use Cases

The features that CoqPyt o�ers are particularly useful for proof

search and learning-based tasks, such as neural theorem proving. To

get a sense of CoqPyt’s interface for collecting data and conducting

proof search, consider the �le test.v in Listing 1, where we have

a Coq �le that de�nes a property about reversing a list. Listing 2

shows how we can leverage CoqPyt to collect data from the �le

shown in Listing 1. We can see which terms are available to the

�le via the pf.context attribute (line 3). For example, all the terms

from the imported package List.v are available to the proofs in

the �le. Likewise, we show how to retrieve information from each

proof step in the �le via the ProofStep attributes (line 6).

1 Require Import List.

2 Lemma rev_append: forall {a} (l1 l2: list a),

3 rev (l1 ++ l2) = rev l2 ++ rev l1.

4 Proof.

5 intros a l1 l2. induction l1; intros.

6 - simpl. rewrite app_nil_r. reflexivity.

7 - simpl. rewrite IHl1.

8 Admitted.

Listing 1: Example Coq �le test.v with a property of rev.

1 with ProofFile("test.v") as pf:

2 pf.exec(len(pf.steps))

3 print(pf.context)

4 for proof in pf.proofs:

5 for step in proof.steps:

6 print(step.text , step.ast , step.context , step.goals)

Listing 2: Proof data available with CoqPyt.

1 incorrect = [" reflexivity.", "\nQed."]

2 correct = [" rewrite app_assoc."] + incorrect

3 with ProofFile("test.v") as pf:

4 pf.exec(len(pf.steps))

5 unproven = pf.unproven_proofs [0]

6 for attempt in [incorrect , correct ]:

7 changes = [ProofPop ()] # Admitted

8 for s in attempt:

9 changes.append(ProofAppend(s))

10 try:

11 pf.change_proof(unproven , changes)

12 print("Proof succeeded!")

13 break

14 except InvalidChangeException:

15 print("Proof attempt not valid.")

Listing 3: Proof attempts with CoqPyt.

Developing neural-based theorem provers requires the ability to

attempt possibly erroneous proofs during proof search. For example,

suppose we wanted to complete the proof rev_append from List-

ing 1. Listing 3 shows how we can use the change_proof method

to conduct proof attempts. We �rst obtain the ProofTerm object

of the proof rev_append (line 5). We then delete the “Admitted.”

step from the proof of rev_append (line 7) and add the steps asso-

ciated with our new proof attempt (line 9). When we attempt to

add the erroneous steps from the proof attempt incorrect (line

11), an error is returned and test.v will remain in its original state.

In turn, when the valid steps from the proof attempt correct are

added (line 11), the changes are applied to test.v.

3 RELATED WORK

Most neural theorem provers for Coq use either Coq Serapy [22, 24],

PyCoq [2], or a custom Python class [4, 5, 23, 28] to create training

examples and perform proof search. The neural theorem prover

GamePad [8] instead modi�es Coq itself to record intermediate

proof states. The CoqGym benchmark dataset [28], collected using

a Python class, is the state-of-the-art benchmark for Coq. However,

it was collected in 2019 and has only been updated to support

versions 8.10 and 8.12 of Coq, while the newest version is 8.19.

CoqPyt will render neural theorem provers useful for new Coq

developments since it can be used for mining software repositories

for newer Coq training data and for evaluation.
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Table 1: Evaluation of CoqPyt’s performance on CompCert. PCC stands for Pearson correlation coe�cient.

Count Execution time (s)

Metric/Feature
Add step Delete step Change steps (Add) Change steps (Delete)

Proofs Steps Load �le Execute �le Beginning On pointer Beginning On pointer Beginning On pointer Beginning On pointer

` (f2 ) 32.3 (48.1) 609.6 (828.1) 6.6 (7.3) 31.2 (63.8) 1.1 (1.8) 0.9 (1.5) 1.0 (1.7) 0.9 (1.6) 1.5 (2.7) 1.0 (1.7) 1.1 (1.8) 0.8 (1.5)
G̃ 12.0 258.0 3.9 9.6 0.4 0.3 0.3 0.3 0.5 0.3 0.4 0.3

PCC (steps) - 1.00 0.59 0.72 0.90 0.92 0.94 0.92 0.87 0.92 0.90 0.91

Table 2: Feature comparison between CoqPyt and similar

tools (✓full support, ∼ partial support, ✗ no support).

Feature CoqPyt Coq LSP Coq Serapy

Get proof state ✓ ✓ ✓

Check �le validity ✓ ✓ ✓

Execute/Modify steps ✓/✓ ∼/✗ ✓/∼
Extract step context ✓ ✗ ✗

Track modules/terms/proofs ✓/✓/✓ ✗/✓/✗ ✓/✗/∼

LeanDojo [29] and PISA [10] are learning environments for Lean

and Isabelle, allowing for data extraction and proof search inter-

action. The neural theorem provers that use these environments

are LLM-based and use retrieval augmentation [11, 17, 29]. CoqPyt

would enable retrieval augmented LLM approaches in Coq.

Pretrained LLMs have been shown to have quantitative reasoning

capabilities [3, 18, 27], especially when they undergo continued

training on math data [1, 14]. To synthesize proofs, they can be

�ne-tuned on proof data [6, 10, 29], few-shot prompted [1, 12, 31],

or even zero-shot prompted [24, 29]. However, the question of test

leakage arises in any evaluation that uses pretrained LLMs. CoqPyt

will allow for data collection after the pretraining cuto� date.

During proof development, proof engineers are constantly per-

forming proof repair [21]. The �rst work in automating this task

uses symbolic tools for automated proof repair in Coq [20], and has

since been applied to other proof systems [15]. Baldur is the �rst

work to use neural methods (in particular, LLMs) to repair proofs,

but as part of its proof synthesis approach [6]. With the creation of

a large-scale dataset of proof repair instances [19], the creation of

LLM methods to automate real-world proof repairs is forthcoming.

4 EVALUATION

Feature Evaluation. Table 2 compares the features of CoqPyt

to similar tools. When compared to Coq LSP, CoqPyt supports a

more extensive range of features by using the data supplied by

Coq LSP and constructing additional components of Coq program

logic upon it. For instance, Coq LSP provides partial support for

operating with steps by enabling retrieval of the proof state at any

position of the �le. However, it lacks implementation for navigating

backward or forward from a speci�c step, which is provided by

CoqPyt. Compared to Coq Serapy, CoqPyt o�ers complete support

for an additional four features: (1) modifying steps – while Coq

Serapy supports the addition or deletion of steps at the current

point of execution, it does not o�er the capability to add or delete

steps at arbitrary positions within the �le; (2) extract step context –

Coq Serapy does not collect the terms used in each step; (3) track

terms – Coq Serapy does not retain a record of the terms de�ned up

to the current execution point; (4) track proofs – even though Coq

Serapy supports commands such as navigating to the next proof, it

does not maintain a record of all the proofs already de�ned in a �le.

Performance Evaluation. To evaluate CoqPyt’s performance, we

used the project CompCert [13] since it is a popular project with

over 1,700 stars on GitHub and 259 Coq �les with considerable

complexity. We ran the experiments inside a Docker container on

an Intel Xeon Silver 4210R CPU @ 2.40GHz. Table 1 summarizes

our results. CoqPyt was able to run on 193 �les, 58 �les contained

Coq-related errors, 6 �les generated out-of-memory errors, and 2

�les crashed for unknown reasons. The column Count describes

metrics for the number of steps and proofs of CompCert. We ran

all the features in each Coq �le. For features that modify steps,

we performed the modi�cation in the beginning of the �le and

at the current point of execution, after executing the whole �le.

We performed each case 5 times for each feature. This approach is

driven by the understanding that the number of required operations

for these features increases as the distance to the point of execution

rises. To evaluate change_steps, we performed a single addition

or deletion to make it simpler to compare to the other features. The

results for �le execution are dependent on a cache that saves our

loading of Coq libraries. As more libraries were cached, the time to

execute the �les decreased. By calculating the Pearson correlation

coe�cient, we conclude that the execution time for all features is

positively correlated to the number of steps in a �le. A replication

package is available at: https://zenodo.org/records/10292580.

5 CONCLUSION

We developed CoqPyt, a Python tool for interacting with Coq. It of-

fers valuable features previously unavailable in similar Coq-related

tools, namely per-step context extraction and arbitrary �le and

proof modi�cation. CoqPyt does not yet explore the full potential

of context extraction, as it does not consider a small subset of Coq’s

rich environment (e.g., module types and section-local constructs)

nor does it fetch context recursively, i.e., for each term in a step con-

text we ignore the context of the term itself. Nonetheless, we have

shown that CoqPyt provides rich features and reasonable execution

times, enabling an expressive interaction style with Coq. These con-

tributions are expected to ease the automation of machine-checked

proof synthesis and repair in the emerging era of LLMs.
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