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Abstract. Password managers (PMs) are important tools that enable
the use of stronger passwords, freeing users from the cognitive burden
of remembering them. Despite this, there are still many users who do
not fully trust PMs. In this paper, we focus on a feature that most PMs
offer that might impact the user’s trust, which is the process of gen-
erating a random password. We present three of the most commonly
used algorithms and we propose a solution for a formally verified refer-
ence implementation of a password generation algorithm. We use Easy-
Crypt to specify and verify our reference implementation. In addition,
we present a proof-of-concept prototype that extends Bitwarden to only
generate compliant passwords, solving a frequent users’ frustration with
PMs. This demonstrates that our formally verified component can be
integrated into an existing (and widely used) PM.
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1 Introduction

To address many of the existing problems regarding password authentication
[16, 22, 28], security experts often recommend using password managers (PMs)
for storing and generating strong random passwords. Indeed, a key feature of
PMs is random password generation, since it helps prevent the use of weaker
passwords and password reuse [21]. Moreover, it provides users with a greater
sense of security [1], thus contributing to a wider adoption of PMs.

However, users frequently express concern and disapproval when PMs do
not generate passwords compliant [6, 26] with the password composition policies
stipulated by the services they use [12]. Stajano et al. [25] argue that this problem
arises due to very restrictive password composition policies that services usually
have [13]. These policies present a greater challenge to password managers since
randomly generated passwords have a higher chance of being non-compliant with
more restrictive policies.
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This problem leads to frustrated users and can be an obstacle to the adop-
tion of PMs. Therefore, it is important to ensure that the password generation
component of a PM is reliable. In particular, it is desirable to guarantee that gen-
erated passwords (1) satisfy the requirements specified by the user (or service),
and (2) are uniformly sampled from the universe induced by the password policy,
thus guaranteeing unpredictability of the password generator. In this paper, we
propose a formally verified reference implementation for a Random Password
Generator (RPG) that addresses these two points. Our main contributions are:

1. We use EasyCrypt [7] to prove that all the passwords generated by our
reference implementation satisfy the given password composition policy and
that when the given policy is unsatisfiable, the implementation does not
generate any password.

2. We formalize the security property stating that our reference implementa-
tion samples the set of passwords according to a uniform distribution, using
the game-based approach for cryptographic security proofs [8, 24]. This jus-
tifies the use of EasyCrypt, since we the need to reason about probability
distributions.

3. We extend the open-source PM Bitwarden to (1) read Apple’s Password Aut-
ofill Rules [5] and to (2) generate passwords using a Jasmin [2] implementa-
tion provably equivalent to our reference implementation. This case study is
a proof-of-concept that integrates interactive theorem proving (EasyCrypt)
and verified compilation (Jasmin) to solve an existing frustration with PMs
generating non-compliant passwords. It also demonstrates that our formally
verified component can be integrated into an existing (and widely used) PM5.
Part of this extension was submitted to the Bitwarden team, who accepted
it and will merge it into the product after a process of code review.

After reviewing current password generation algorithms in Section 2, we
present our reference implementation and its verification in Section 3. In Sec-
tion 4 we present the end-to-end case study and in Section 5 we discuss related
work. We conclude the paper in Section 6, where we also discuss future work.

2 Current Password Generation Algorithms

In this section we present a brief description of widely-used password gener-
ation algorithms. We focus on the password generation algorithms of three
PMs: Google Chrome’s PM (v89.0.4364.1)6, Bitwarden (v1.47.1)7, and KeeP-
ass (v2.46)8. These were chosen because they are widely used and open-source,
which allows us to access their source code and study them in detail.

5 https://github.com/passcert-project/pw_generator_server
6 https://source.chromium.org/chromium/chromium/src/+/master:components
7 https://github.com/bitwarden
8 https://github.com/dlech/KeePass2.x

https://github.com/passcert-project/pw_generator_server
https://source.chromium.org/chromium/chromium/src/+/master:components
https://github.com/bitwarden
https://github.com/dlech/KeePass2.x
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2.1 Password Composition Policies

In general, PMs allow users to define password composition policies that the
generated passwords must satisfy. These policies define the structure of the pass-
word, including its length and the different character classes that may be used.
These policies are used to restrict the space of user-created passwords, thus pre-
cluding some that are easily guessed. Table 1 shows the policies that can be
specified in the studied PMs. In the second row, the Alphabetic set in Chrome is
the union of Lowercase Letters and Uppercase Letters. The set of Special Char-
acters in Chrome and Bitwarden is {- . : !}, while in KeePass it is {! ” # $ %
& ’ * + , . / : ; = ? @ \ˆ |}. The Brackets set in KeePass is {( ) { } [ ] ⟨⟩}.
The Space, Minus, and Underline are the single element sets { }, {-}, and { },
respectively.

Chrome Bitwarden KeePass

Password length 1-200 5-128 1-30000

Available sets

Lowercase Letters
Uppercase Letters

Alphabetic
Numbers

Special Characters

Lowercase Letters
Uppercase Letters

Numbers
Special Characters

Lowercase Letters
Uppercase Letters

Numbers
Special Characters

Brackets
Space
Minus

Underline
Minimum and

maximum
occurrences of

characters per set

Yes
Yes. Can only

define minimum
No

Exclude similar
characters

Yes {l o I O 0 1} Yes {l I O 0 1} Yes {l I O 0 1 |}

Define by hand
a character set

No No Yes

Define by hand
a character set
to be excluded

No No Yes

Remove duplicates No No Yes

Table 1. Available policy options a user can define.

2.2 Random Password Generation

The main idea of the surveyed algorithms is to generate random characters
from the different character sets until the password length is fulfilled, taking
also into consideration the minimum and maximum occurrences of characters
per set. Chrome’s algorithm starts by randomly generating characters from the
sets which have the minimum number of occurrences defined. Then, it generates
characters from the union of all sets which have not already reached their maxi-
mum number of occurrences. Lastly, it generates a permutation on the characters
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of the string, resulting in a random generated password. Bitwarden’s algorithm
is similar, but it makes the permutation before generating the characters. For
example, it starts by creating a string like ‘llunl’ to express that the first two
characters are lowercase letters, followed by an uppercase letter, then a num-
ber, and finally a lowercase letter. Only then it generates the characters from
the respective sets. KeePass does not support defining the minimum and maxi-
mum occurrences of characters per set, so the algorithm just randomly generates
characters from the union of the sets defined in the policy.

String Permutation. Given the need to generate a random permutation of
the characters of a string, Bitwarden and Chrome both implement an algorithm
to do so. The basic idea for both PMs is the same, which is to randomly choose
one character from the original string for each position of the new string.

Random Number Generator. The RPG needs to have an implementation of
a Random Number Generator (RNG) that generates random numbers within a
range of values. Chrome and KeePass use similar RNGs that generate numbers
from 0 to an input range. Bitwarden’s RNG allows generating numbers from an
arbitrary minimum value up to an arbitrary maximum value, but it can trivially
be reduced to the former approach. The main idea of these RNGs is (1) to rely
on a random byte generator, (2) to perform some form of rejection sampling to
ensure uniformly distributed values up to a given bound, and (3) finally reducing
it to the required range.

The three PMs adopt different approaches regarding the source of random
bytes: Chrome uses system calls depending on the operating system it is running,
Bitwarden uses the NodeJS randomBytes() method, while KeePass defines its
own random bytes generator based on ChaCha20. Because of these different
strategies, in this work we choose not to address the pseudo-random nature of
the random byte generator — instead, we assume the existence of a mechanism
allowing to sample bytes according to an uniform distribution. Specifically, we
assume an operation that uniformly samples 64-bit words, and then reason on
the remaining steps towards the construction of an arbitrary integer range RNG.

3 Verified Password Generation

In this section, we present our reference implementation and the properties that
we formally prove. We separate the specifications into an abstract overview,
followed by a concrete one in EasyCrypt.

3.1 Reference Implementation

Abstract Overview. Based on the information presented in Section 2, we
propose a reference implementation for an RPG which offers the following policy
adjustments: (1) the user can define the password length (1-200); (2) the user can



Verified Password Generation from Password Composition Policies 5

choose which sets to use (from Lowercase Letters, Uppercase Letters, Numbers,
and Special Characters); (3) the user can define the minimum and maximum
occurrences of characters per set. The restriction on the maximum length is the
same as in Chrome’s algorithm (also, we argue that 200 is a reasonable limit,
since that arbitrary passwords with at least 16 characters seem to be hard to
guess and considered secure [23]).

The pseudo-code of the proposed reference implementation is shown in Algo-
rithm 1. The entry point is the procedure GeneratePassword, which receives
as input a password composition policy and, if it is satisfiable, a password is
generated and returned. Otherwise, a password is not generated and null is re-
turned. The policy is satisfiable if the defined length is in the interval [1, 200],
if all min values are non-negative, if all max values are greater or equal to the
corresponding min value, if the sum of all min values is less or equal to length,
and if the sum of all max values is greater or equal to length. If any of these
conditions is not true, then no password is able to satisfy the policy.

To output a random generated password, the algorithm first randomly gener-
ates characters from the sets that have a min value greater than 0, and appends
them to the password (initially an empty string). Then, it randomly generates
characters from the union of all sets which have fewer occurrences of characters
in password than their max value defined in the policy until the size of password
becomes equal to the length defined in the policy. Finally, it generates a random
permutation of the string, and returns it.

EasyCrypt Implementation. EasyCrypt [7] is an interactive framework for
verifying the security of cryptographic constructions and protocols using a game-
based approach [8, 24]. EasyCrypt implements program logics for proving prop-
erties of imperative programs. Its main logics are Hoare Logic and Relational
Hoare Logic. Relational Hoare Logic is essential in EasyCrypt, because it pro-
vides the ability to establish relations between programs, and how they affect
memory values, which is fundamental in the game-based approach. Notice that
we do not consider any cryptographic assumption — our use of EasyCrypt is
rather justified on the need to reason about probability distributions (e.g. in
reasoning on the RNG procedure, as explained above), alongside with more
standard Hoare Logic reasoning used for proving correctness assertions.

To model our reference implementation in EasyCrypt, we need to be more
precise regarding the types and methods of the algorithm. Figure 1 shows the
definitions of the types used to reason about password generation. Instances
of type char are integers (which can be directly mapped to the corresponding
ASCII character), and both the types password and charSet are lists of chars.
The type policy is a record type, with the necessary fields to specify a password
composition policy. All this information is in a repository in GitHub9, as well
as some other previously explained definitions (e.g., satisfiability of a policy),
theorems, and properties about these types.

9 https://github.com/passcert-project/random-password-generator/blob/

main/EC/PasswordGenerationTh.eca

https://github.com/passcert-project/random-password-generator/blob/main/EC/PasswordGenerationTh.eca
https://github.com/passcert-project/random-password-generator/blob/main/EC/PasswordGenerationTh.eca
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type char = int.

type password = char list.

type charSet = char list.

type policy = {

length : int;

lowercaseMin : int;

lowercaseMax : int;

uppercaseMin : int;

uppercaseMax : int;

numbersMin : int;

numbersMax : int;

specialMin : int;

specialMax : int

}.

Fig. 1. Type definitions

Regarding the methods, it is easy to see
how the abstract version of the reference im-
plementation maps to the EasyCrypt imple-
mentation10. The main difference is when
defining the unionSet. In the abstract im-
plementation, we just say that this variable
is the union of all sets such that their max
values are greater than 0. In EasyCrypt we
have the method define_union_set which
implements this idea. To simplify the proofs,
instead of decrementing the max value of
a set after sampling a character from it,
our algorithm has some extra variables (e.g.,
lowercaseAvailable for the Lowercase Set)
which say how many characters we can still
sample from the respective set. The method
define_union_set receives these variables as
arguments, and defines the union of the sets which we can still sample characters
from.

3.2 Formal Proofs

In this section we present the two main properties to be proved about our RPG:
functional correctness and security.

Functional Correctness (Abstract). We say that an RPG is functionally
correct if generated passwords satisfy the input policy. This property guarantees
that users will always get an output according to their expectations.

We follow the standard approach of expressing correctness of the scheme by a
probabilistic experiment that checks if the specification is fulfilled.

CorrectnessRPG(policy)

if policy is satisfiable

pwd← RPG.generate password(policy)

return satisfiesPolicy(policy, pwd)

else

return isNone(pwd)

fi

Fig. 2. Correctness Experiment (Abstract)

Figure 2 shows the Correct-
ness experiment, which is pa-
rameterized by an RPG im-
plementation that, for any
policy, outputs true if the
RPG behaves according to
the specification. Specifically,
if the input policy is satisfi-
able, it checks if the password
satisfies that policy. Other-
wise, it returns whether it is
equal to None. To simplify the
reasoning around this property, when the policy is satisfiable, one can separate

10 https://github.com/passcert-project/random-password-generator/blob/

main/EC/passCertRPG_ref.ec

https://github.com/passcert-project/random-password-generator/blob/main/EC/passCertRPG_ref.ec
https://github.com/passcert-project/random-password-generator/blob/main/EC/passCertRPG_ref.ec
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Algorithm 1 RPG Reference Implementation

1: procedure GeneratePassword(policy)
2: if policy is satisfiable then
3: pwLength← policy.pwLength
4: charSets← policy.charSets
5: password← ε
6: for all set ∈ charSets do
7: for i = 1, 2, . . . , set.min do
8: char ← RandomCharGenerator(set)
9: password← password||char
10: end for
11: end for
12: while len(password) < pwLength do
13: unionSet←

⋃
set∈charSets set such that set.max > 0

14: char ← RandomCharGenerator(unionSet)
15: password← password||char
16: end while
17: password← Permutation(password)
18: return password
19: else
20: return null
21: end if
22: end procedure
23:
24: procedure RandomCharGenerator(set)
25: choice← RNG(set.size)
26: set.max← set.max− 1
27: return choice
28: end procedure
29:
30: procedure Permutation(string)
31: for i = len(string)− 1, . . . , 0 do
32: j ← RNG(i)
33: string[i], string[j]← string[j], string[i]
34: end for
35: return string
36: end procedure
37:
38: procedure RNG(range)
39: maxV alue← (uint64.maxV alue/range) ∗ range− 1
40: do
41: value← (uint64) GenerateRandomBytes
42: while value > maxV alue
43: return value mod range
44: end procedure
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the proof into two steps: first we prove that the length defined in the policy is
satisfied, and then we prove that the different bounds of minimum and maximum
occurrences per set are also satisfied.

Functional Correctness (EasyCrypt). In EasyCrypt, the correctness exper-
iment is modelled as the module Correctness, shown in Figure 3. It is param-
eterized by a password generator implementation (being RPG_T its signature),
and has a single method main encoding the experiment. We note the use of
password option for the output of the generate_password method, which ex-
tends the password type with the extra element None – is_some and is_none

are predicates that query the constructor used in an optional value, and oget

extracts a password from it (if available). The experiment simply executes the
RPG and, depending on the satisfiability of the policy, either checks if the gen-
erated password satisfies it, or if it is equal to None. The EasyCrypt code is
available online11,12.

module Correctness(RPG : RPG_T) = {

proc main(policy:policy) : bool = {

var pw : password option;

var satisfied : bool;

pw <@ RPG.generate_password(policy);

if(satisfiablePolicy policy) {

satisfied <- is_some pw /\ satisfiesPolicy policy (oget pw);

}

else {

satisfied <- is_none pw;

}

return satisfied;

}

}.

Fig. 3. Correctness Procedure (Easycrypt)

The correctness property can be expressed in EasyCrypt as follows:

lemma rpg_correctness :

Pr[Correctness(RPGRef).main : true ==> res] = 1%r.

11 https://github.com/passcert-project/random-password-generator/blob/

main/EC/passCertRPG_ref.ec
12 https://github.com/passcert-project/random-password-generator/blob/

main/EC/RPGTh.eca

https://github.com/passcert-project/random-password-generator/blob/main/EC/passCertRPG_ref.ec
https://github.com/passcert-project/random-password-generator/blob/main/EC/passCertRPG_ref.ec
https://github.com/passcert-project/random-password-generator/blob/main/EC/RPGTh.eca
https://github.com/passcert-project/random-password-generator/blob/main/EC/RPGTh.eca
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It states that, running the correctness experiment (main method) of the
Correctness module instantiated with our RPG reference implementation, pro-
duces the output true with probability 1 (without any constraint on input pol-
icy). The proof of this lemma amounts essentially to prove termination of the
main method, while also proving that this method always returns true, indepen-
dently on the policy given as input. These two properties can be expressed by
the two following lemmas, respectively:

lemma c_lossless :

islossless Correctness(RPGRef).main.

lemma c_correct p:

hoare[Correctness(RPGRef).main : policy = p ==> res].

The islossless assertion states that Correctness(RPGRef).main termi-
nates with probability 1 for any input. Notice that this is indeed non-trivial,
as our RPG performs rejection sampling. Hence, we are not able to prove a
concrete bound for the number of iterations for the loop in the RNG procedure
(Algorithm 1), but we nevertheless establish that it eventually terminates (ac-
tually, in expected constant time).

The second lemma is an Hoare triple. In EasyCrypt an Hoare triple is writ-
ten as hoare [Command : Precondition ==> Postcondition]. To prove this
Hoare triple, we need to prove that the main method outputs a password that
satisfies the input policy, in case it is satisfiable, and None if it is not satisfiable.
These ideas can be expressed with the following lemmas:

lemma rpg_correctness_sat_pcp_hl (p:policy) :

hoare [ RPGRef.generate_password : policy = p /\

satisfiablePolicy p

==>

is_some res /\ satisfiesLength p (oget res)

/\ satisfiesBounds p (oget res)

].

and

lemma rpg_correctness_unsat_pcp_hl (p:policy) :

hoare [ RPGRef.generate_password : policy = p /\

!(satisfiablePolicy p)

==>

res = None

].

The second lemma is trivial to prove, because the first thing our RPG imple-
mentation does is to check if the input policy is satisfiable. If it is not, our RPG
outputs None. As mentioned in Section 3.2, the first lemma can be proved by
separately reasoning about the generated password satisfying the length defined
in the policy, and then about the different set bounds. This means that we should
first prove the lemmas:
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lemma rpg_correctness_length_hl (p:policy) :

hoare [ RPGRef.generate_password : policy = p /\

satisfiablePolicy p

==>

is_some res /\ satisfiesLength p (oget res)

].

and

lemma rpg_correctness_bounds_hl (p:policy) :

hoare [ RPGRef.generate_password : policy = p /\

satisfiablePolicy p

==>

is_some res /\ satisfiesBounds p (oget res)

].

It is easy to see that we can combine these two lemmas to prove the lemma
rpg_correctness_sat_pcp_hl since we can use hoare [ C : P ==> Q1] and
hoare [ C : P ==> Q2], to conclude hoare [ C : P ==> Q1 /\ Q2]. Using
rpg_correctness_sat_pcp_hl and rpg_correctness_unsat_pcp_hl, we can
prove the lemma c_correct using Hoare logic rules. With the lemmas c_lossless
and c_lossless proved, we can combine them to finally prove our main lemma
rpg_correctness, which ensures that our RPG implementation is correct.

Security (Abstract). We say that an RPG is secure if, given any policy, the
generated password has the same probability of being generated as any other pos-
sible password that satisfies that policy. In other words, the generate_password
method samples the set of passwords that satisfy the policy according to a uni-
form distribution. To prove this property we can use the game-based approach
for cryptographic security proofs [8, 24].

proc IdealRPG(policy)

if policy is satisfiable

password ←$ p ⊂ P

return password

else

return None

fi

Fig. 4. Ideal RPG. p is the subset
of the set of all possible passwords
P that satisfy the given policy.

As shown abstractly in Figure 4, we cre-
ate a module called IdealRPG which, in case
it receives as input a satisfiable policy, outputs
a password sampled from the subset of pass-
words that satisfy the policy, according to a
uniform distribution over that subset (here,
sampling is denoted by the operator ←$ ).

If the policy is not satisfiable, it outputs
None. In order to consider our implementa-
tion secure, we must show that any program
(e.g., attacker) that has oracle access to the
IdealRPG and our RPG can not distinguish
whether it is interacting with one or the other.

To achieve this, we can use probabilistic
relational Hoare Logic (pRHL) to show that
both modules’ generate password methods produce the same result (they have
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the same distribution over their output, given any input). We can avoid di-
rectly reasoning about the indistinguishability between these two modules, since
their implementations are significantly different. By using the game-based ap-
proach, we can implement intermediate modules that are more closely related,
thus breaking the proof into smaller steps that are easier to justify.

Security (EasyCrypt). To construct the IdealRPG module, we start by ax-
iomatizing uniform distributions over the type of passwords:

op dpassword : password distr.

axiom dpassword_ll : is_lossless dpassword.

axiom dpassword_uni : is_uniform dpassword.

axiom dpassword_supp : forall p, p \in dpassword => validPassword p.

The operator dpassword is the declared distribution over the type password.
The axioms defined are important properties about this distribution: (1) lossless
means that it is a proper distribution (its probability mass function sums to
one); (2) uniform means that all elements in its support have the same mass;
(3) the support of the distribution is the set of all valid passwords (length and
admissible chars). Here, validPassword p is true if p contains only valid char-
acters (lowercase, uppercase, digits, and allowed symbols) and if its length is at
most 200. This distribution can be used to construct the IdealRPG module that
meets the requirements for our RPG security definition.

module IdealRPG = {

proc generate_password(policy:policy) = {

var pw;

var out;

if(satisfiablePolicy policy) {

pw <$ dpassword \ (fun pass => !(satisfiesPolicy(policy pass)));

out <- Some pw;

} else {

out <- None;

}

return out;

}

}.

In this module, a password is sampled if the policy is satisfiable, otherwise
outputs None. The sampling makes use of the axiomatized distribution over
passwords, restricting its support by removing the passwords that do not satisfy
the policy. Given these definitions, we can write the lemma that we need to prove
to consider our RPG secure:

lemma rpg_security :

equiv [IdealRPG.generate_password ~ RPGRef.generate_password :

={policy} ==> ={res} ].
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This is a pRHL judgement which means that for all memories m1 and m2
(sets of variables of IdealRPG and RPGRef, respectively), if ={policy} holds
(the input policy has the same value in both memories), then the distribution on
memories dm1 and dm2, obtained by running the respective methods from the
initial memory, satisfy ={res} (res, the output value, has the same mass in both
distributions). If we prove this lemma for our RPG reference implementation,
we prove that these methods produce the same distributions over their output,
hence establishing security of the RPG reference implementation.

General Steps To Prove Security. To prove the security lemma stated above,
we need to establish that the induced distribution from the execution of Real-
RPG is uniform among all passwords satisfying the policy. It requires fairly
detailed reasoning on the distribution level in EasyCrypt. The mechanised proof
is work in progress; here, we present a proof sketch. The general structure of
the argument follows the structure of Algorithm 1: (1) It starts by generating a
password where each character class prescribed in the policy is placed in a spe-
cific position (what we have called policy-normalised password); (2) It randomly
shuffles the password. The result follows from arguing that policy-normalised
passwords are sampled according to a uniform distribution, and that the final
shuffle allows to reach any possible password satisfying the policy. In the course
of the formalisation of the above points, auxiliary results such as the correctness
of the well-known probabilistic algorithm of rejection sampling (procedure Rng)
and the Fisher-Yates shuffle algorithm (procedure Permutation) have to be
tackled.

4 Case Study: From Apple Password Rules to Verified
Password Generation in Bitwarden

This section describes a proof-of-concept prototype that integrates a Jasmin [2]
implementation provably equivalent to our reference implementation into a widely-
used PM. In particular, we extend Bitwarden to (1) read Apple’s Password Aut-
ofill Rules [5], which are password composition policies in a format defined by
Apple, and (2) to generate compliant passwords using our Jasmin implementa-
tion.

The proof-of-concept offers a solution to the common problem of users being
concerned and disappointed by the fact that passwords generated by the PM
are often not compliant with the password composition policies stipulated by the
websites they use [12]. One way to solve this problem is to, first, provide a domain
specific language (DSL) that services can use to specify their required password
composition policies, and, second, ensure that PMs use the DSL specifications in
their password generation algorithms. There have been some proposals for this:
Stajano et al. proposed the creation of HTML semantic labels [25] and Horsch et
al. proposed the Password Policy Markup Language [18]. Oesch and Ruoti [20]
recently reinforced this idea, suggesting that this type of annotations could help
the users with using PMs, as well as increase the accuracy of the password
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<rule> ::= (<required> | <allowed> | <length_reqs> | <max_consecutive>)*

<required> ::= "required: " <list_ids_classes> "; "

<allowed> ::= "allowed: " <list_ids_classes> "; "

<length_reqs> ::= "minlength: " <non_negative_integer> "; "

| "maxlength: " <non_negative_integer> "; "

<max_consecutive> ::= "max-consecutive: " <non_negative_integer> "; "

<id_class> ::= (<identifier> | <character_class>)

<list_ids_classes> ::= <id_class> | <id_class> ", " <list_ids_classes>

<identifier> ::= "lower" | "upper" | "digits" | "special"

| "ascii-printable" | "unicode"

<character_class> ::= "[" (<upper> | <lower> | <special> | <digit>)+ "]"

Fig. 5. Grammar used by Apple’s Password Autofill Rules.

generator. While investigating a way to achieve this with modern PMs, we found
that Apple has also developed a DSL to express Password Autofill Rules [5]. The
idea is to add a specification to the HTML code, in the form of annotations.

4.1 Apple’s Password Autofill Rules

Apple’s DSL is based on five properties — required, allowed, max-consecutive,
minlength, and maxlength — and some identifiers that describe character classes
— upper, lower, digits, special, ascii-printable, and unicode. These are the ele-
ments that allow the description of the password rules. It is also possible to
specify a custom set of characters by surrounding it with square brackets (e.g.,
[abcd] denotes the lowercase letters from a to d). For example, to require a
password with at least eight characters consisting of a mix of uppercase and
lowercase letters, and at least one number, the following rule can be used:

required: upper; required: lower; required: digit; minlength: 8;

A more formal description of the grammar is shown in Figure 5.

Properties description. The required property is used when the restrictions
must be followed by all generated passwords. The allowed property is used to
specify a subset of allowed characters, i.e., it is used when a password is permit-
ted to have a given character class, but it is not mandatory. If allowed is not
included in the rule, all the required characters are permitted. If both properties
are specified, the subspace of all required and allowed is permitted. If neither is
specified, every ASCII character is permitted. The max-consecutive property
represents the maximum length of a run of consecutive identical characters that
can be present in the generated password, e.g., the sequence aah would be possi-
ble with max-consecutive: 2, but aaah would not. If multiple max-consecutive
properties are specified, the value considered will be the minimum of them all.
The minlength and maxlength properties denote the minimum and maximum
number of characters, respectively, that a password can have to be accepted.
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returns 
a password

Jasmin
Password
Generator

interprets 
password policies

Website
Password Generator

Server

requests 
a password

Fig. 6. Overview of Proof-of-Concept Prototype

Both numbers need to be greater than 0 and minlength has to be at most
maxlength ; otherwise, the default length of the PM will be used.

Identifiers. Next to the allowed or required properties, we can use any of the
default identifiers, which describe conventional character classes. The identifier
upper describes the character class that includes all uppercase letters, i.e., [A-
Z] ; the identifier lower describes the character class that includes all lowercase
letters, i.e., [a-z] ; the digits identifier describes the character class that includes
all digits, i.e., [0-9] ; and the special identifier describes the character class
that includes -˜!@#$%ˆ&* +=‘|(){}[:;”’<>,.?] and . The identifiers ascii-
printable and unicode describe the character classes that include all ASCII
printable characters and all the unicode characters, respectively. Additionally,
users of the DSL can choose to describe their custom character classes, e.g.,
[aeiou] is the character class that contains all the vowels, in lowercase.

4.2 Jasmin Password Generator

We coded our reference implementation in Jasmin [2], a framework for develop-
ing high-speed and high-assurance cryptographic software. The Jasmin program-
ming language combines high-level and low-level constructs while guaranteeing
verifiability of memory safety and constant-time security. The compiler trans-
forms Jasmin programs into assembly, while preserving behavior, safety, and
constant-time security of the source code. The Jasmin compiler is formally ver-
ified for correctness. We chose Jasmin because it is possible to automatically
generate an EasyCrypt model from a Jasmin program. This ensures that when
reasoning about the model, we are reasoning about the correspondent Jasmin
program, making it possible to formally establish an equivalence between the
Jasmin implementation and our reference implementation.

4.3 Integration With Bitwarden

An overview of our integration of the Jasmin password generator with the Bit-
warden browser extension is shown in Figure 6. We first extended Bitwarden
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to interpret Apple’s Password Autofill Rules. We start by searching in the en-
tire DOM for the HTML attribute passwordrules. When found, we parse its
value. For this we used the official Apple’s Javascript parser13. We then pass
this information to the password generator component, using the browser’s na-
tive messaging API. We also replaced the default password generator with our
Jasmin password generator. Since in the context of the browser extension it is
not possible to directly run local processes, we exposed our password generator
as a RESTful service: the extension sends a POST request, with the body of the
request containing the required password policy.

To demonstrate the impact of our proof-of-concept, we generated 20 test files,
each one containing 1000 randomly generated passwords: 10 of these files were
generated by Bitwarden’s generator and the other 10 were generated by our Jas-
min generator. Bitwarden’s generator used its default settings — 14-character
password with uppercase characters, lowercase characters, and numbers. We used
the following policy, which is actually used by British government services, ac-
cording to a community-updated file in Apple’s repo14:

minlength: 10; required: lower; required: upper; required: digit;

required: special;

We checked if the passwords generated by Bitwarden satisfy this policy. All pass-
words failed this test, since Bitwarden’s default settings do not include symbols.
This is an instance of the problem discussed above, regarding users’ frustra-
tion with the generation of non-compliant passwords. We then used the same
approach with our Jasmin generator and found that all passwords generated
satisfy the policy.

Since our extension improves the usability of Bitwarden, we submitted the
code that parses the password rules and passes them to the password generator
to the Bitwarden team, who has internally approved our extension and will go
through a code review process to get it ready to be merged15.

5 Related Work

To the best of our knowledge, our work is the first to address formal verification
of random password generators16. However, the area of formal verification of
security and cryptographic software has attracted much interest in recent years.
Regarding implementation correctness, HACL⋆ [27] is a high-assurance cryp-
tographic C library that has been formally verified against a readable math-
ematical specification in F⋆. Similarly, FiatCrypto [14] proposes a framework

13 https://github.com/apple/password-manager-resources/blob/main/tools/

PasswordRulesParser.js
14 https://github.com/apple/password-manager-resources/blob/main/quirks/

password-rules.json
15 https://github.com/bitwarden/browser/pull/2047#issuecomment-978846599
16 A search on Google Scholar shows one relevant paper [17], which is the abstract of

an informal talk delivered by our team.

https://github.com/apple/password-manager-resources/blob/main/tools/PasswordRulesParser.js
https://github.com/apple/password-manager-resources/blob/main/tools/PasswordRulesParser.js
https://github.com/apple/password-manager-resources/blob/main/quirks/password-rules.json
https://github.com/apple/password-manager-resources/blob/main/quirks/password-rules.json
https://github.com/bitwarden/browser/pull/2047#issuecomment-978846599
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written in Coq for deriving correct-by-construction C code. It has been deployed
in Google’s BoringSSL library which is used by Chrome and Android. Target-
ing directly assembly, Vale [9] builds on Microsoft’s Dafny and Z3 SMT prover
to verify annotated assembly code. Finally, the Jasmin framework [2], that we
have adopted in our development, has been previously used to produce highly-
efficient certified executable code [3], combining it with security proofs in an
unified framework [4].

Regarding other uses of formal verification in the domain of password se-
curity, there is previous work on creating certified password composition policy
enforcement software, implemented from within the Coq proof assistant and
extracted to Haskell [15]. The extracted Haskell is then compiled into a plug-
gable authentication module readily usable from a real Linux system. Johnson
et al. [19] also used Coq to model password composition policies and verify the
immunity or vulnerability of 14 password composition policies to the password
guessing attacks utilised by the Mirai and Conficker botnet worms. The Pass-
Cert project17 is exploring formal verification applied to password managers and
aims to determine whether formal verification can increase users’ confidence in
PMs and thus increase their adoption [10, 11].

6 Conclusion

We propose a formally verified reference implementation for a Random Password
Generator. We prove that, given a password composition policy, generated pass-
words are compliant, and we formalize the property that the generator samples
the set of passwords according to a uniform distribution. In addition, we present
a proof-of-concept prototype that solves the identified frustration with PMs of
generating non-compliant passwords and demonstrates that our formally verified
component can be integrated into a widely used PM.

As future work, we plan to fully formalize the proof of security informally
discussed in Section 3.2 and to further develop the proof-of-concept prototype so
that other browser-based PMs can benefit from it. We might also add support
for further password composition policies (e.g. policies that require characters
from at least three different classes). While generally speaking strict password
composition policies are preferable, these can still generate easily guessed pass-
words (e.g., a policy that enforces the use of all character classes may generate
the easily guessed password “P@ssw0rd”) [23]. So, it might also be interesting to
formalize properties regarding password strength, which would guarantee that
our RPG would only generate strong passwords (according to some metric).

Acknowledgments. This work was partially funded by the PassCert project,
a CMU Portugal Exploratory Project funded by Fundação para a Ciência e Tec-
nologia (FCT), with reference CMU/TIC/0006/2019 and supported by national
funds through FCT under project UIDB/50021/2020.

17 PassCert project: https://passcert-project.github.io

https://passcert-project.github.io
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