A Preliminary Study on Generating Well-Formed
Q# Quantum Programs for Fuzz Testing

Miguel Trinca

Joao F. Ferreira

Rui Abreu

INESC-ID & IST, University of Lisbon INESC-ID & IST, University of Lisbon INESC-ID & FEUP, University of Porto

Abstract—Generative Sequence-To-Sequence models have been
proposed for the task of generating well-formed programs, an
important task for fuzz testing tools such as compilers. In this
paper, we propose a Sequence-to-Sequence model to generate
well-formed Q# Quantum programs. The ratio of syntactically
valid programs among 1,000 Q# files generated by our model is
79.6%. In addition, we also contribute with a dataset of 1,723 Q#
files taken from publicly available repositories on GitHub, which
can be used by the growing community of Quantum Software
Engineering.

Index Terms—Quantum Software Engineering, Fuzz Testing,
Sequence-to-Sequence Models, Machine Learning

I. INTRODUCTION

Quantum Computing represents a paradigm shift in compu-
tation and promises to deliver a huge leap forward in com-
putational problem solving. This paradigm shift requires not
only new programming methodologies and new programming
languages, but also reliable and mature tooling that supports
these. Compilers, for instance, which transform quantum pro-
grams into quantum circuits that can be executed by quantum
devices, are an important part of the puzzle. In recent years,
several compilers have been proposed by major players in the
field, such as Google’s Cirq [1], Microsoft’s QDK [2], [3] and
IBM’s Qiskit [4].

It is vital that quantum compilers are reliable, so that the
original intentions of quantum programmers are reflected in
the quantum circuits that will be executed. However, it is
known that compilers may have issues; for instance, during
compilation, internal compiler errors (errors intrinsic to the
compiler) may be raised. A common practice to identify these
issues is to create compiler test suites. According to Chen et
al. [5], one of the main challenges is that compilers have multi-
ple options and features, such as different optimizations levels.
Thus, it is difficult to create test programs that target specific
optimizations levels of the compiler. Another challenge is that
these test suites are often manually devised which improves
the testing coverage but it also takes a lot of human effort.
Grammar-based fuzzing is an effective fuzzing technique that
can alleviate human labor and has been proposed to solve this
issue. In particular, generative Sequence-To-Sequence models,
first introduced by Sutskever et al. [6], have been proposed
for the task of generating well-formed programs, towards fuzz

This work was supported by national funds through FCT under project
UIDB/50021/2020

testing compilers. One key example is DeepFuzz [7], which
was used to generate well-formed C programs towards fuzzing
C compilers such as GCC.

In this paper, we explore the same approach as DeepFuzz
and we propose a Sequence-to-Sequence model to generate
well-formed Q# Quantum programs. Our ultimate goal is to
use the generated programs to test Q# compilers, but here we
focus on presenting preliminary results, where we evaluate
the performance of our model by measuring the Pass Rate,
the ratio between all syntactically correct programs and all
generated programs. This metric gives us a better insight on
how well the model is generating well-formed programs. In
our preliminary experiments, we use the model to generate
1,000 Q# files and we obtain a Pass Rate of 79.6%.

In addition, we also contribute with a dataset of 1,723 Q#
files taken from publicly available repositories on GitHub,
which can be used by the growing community of Quantum
Software Engineering. The dataset and generated files are
available at: https://github.com/sr-1ab/qsharp-fuzz

II. OVERVIEW

Our project uses a neural network model denoted as
Sequence-To-Sequence [6], which is known for text generation
[8] and machine translation [9]. It was also used on more
recent studies such as producing well-formed C programs to
fuzz compilers (DeepFuzz [7]), and producing PDF files to
fuzz the PDF parser (Learn&Fuzz [10]).

A. Sequence-to-Sequence Model

The sequence-to-sequence model implements two recurrent
neural networks (RNN) known as the Encoder and Decoder.
This model was first proposed by Cho et al. [11], where
the former RNN encodes a sequence of symbols into a
fixed-length vector representation, while the latter decodes
the representation into another sequence of symbols. The
authors show that the proposed model can learn semantically
and syntactically representation of linguist phrases. Also, the
authors of DeepFuzz demonstrated that it could also learn a
programming language’s grammar and generate source code.

1) Recurrent Neural Network: A RNN is a neural network
that consists of a hidden state & and an optional output y that
operates on a variable-length sequence X = (z1,...,z7). At
each timestep ¢, the hidden state is updated as:

hiy = f(hg—1y,xt)



(a) Dataset Statistics

Number of 131
repositories with
Qf# files

(b) Project Workflow

Generation of New Programs

Sequence-To-Sequence
model

Evaluation of Generated Programs

Average number of 13 Data Collection

Prepare
Data

—>

files per repository

Max number of 321
files in a repository

GitHub API

Min number of 1

4’@7_ J

Q# Files

Is Program

Well-formed? Pass Rate

files in a repository

Total number of Q#
files

1,723

Generate Files

=

NEW Q# Files

Fig. 1: Dataset statistics and project workflow

Here, f is a non-linear activation function, which can be as
complex as a long short-term memory (LSTM) unit.

At each timestep ¢, the output from the RNN is a conditional
distribution p(z¢|x¢—1, ..., 1), since, by learning to predict the
next symbol in a sequence, an RNN can learn a probability
distribution. For example, we use a softmax activation func-
tion, upon a multinomial distribution of the next character:

exp(wihy)
Z;‘f:l exp(wj hy)

This is defined for all possible symbols j = 1, ..., K, where
w; are the rows of a weight matrix W. Additionally, we can
compute the probability of the sequence X by combining these
probabilities:

p(:ct|xt_1, ...,ZEl) =

T

p(X) =[] p(zelzis, ... 21)
t=1

With the learned distribution, we can iteratively sample
new characters at each timestep, thereby generating a new
sequence.

2) RNN Encoder-Decoder: This model is composed of
two RNNs, the Encoder, which learns to encode a variable-
length sequence into a fixed-length vector representation,
and the Decoder, which decodes a given fixed-length vector
representation back into a variable-length sequence. In other
words, the model is able to learn the conditional distribution
over a variable-length sequence X conditioned on yet another
variable-length sequence Y, i.e. p(y1, ...,y | @1,...,2T),
where T and 7" may differ in size. As the Encoder reads
each character of an input sequence sequentially, the hidden
state h; is updated according to RNN update. In the end,
the hidden state is denoted as a summary c¢ of the whole
input sequence. On the other hand, the Decoder is trained
to generate the output sequence by predicting the next symbol
Yyt given the hidden state h ;. However, the update function
of the hidden state is different, since both y; and h<t> are
dependent on y;—1 and on c:

hiy = f(h-1y,Yt-1,¢)

Similarly, the conditional distribution of the next character is:

p(yt|yt717 Yt—2---, Y1, C) = g(h<t)7yt717 C)

Here, f and g are activation functions and g must produce
valid probabilities (e.g. softmax). When combining training on
both RNNs, we are able to generate a target sequence given
an input sequence. Moreover, to maintain information over
time, RNNs have feedback loops; in our case, we use LSTMs.
LSTM units include a memory cell that can keep information
in memory for long periods.

B. Training Data

To train this model, it is crucial to have a significant
large dataset with a variety of different code functions. To
the best of our knowledge, there is not a publicly available
dataset of Q# programs that satisfies our needs. Therefore, we
used the GitHub API to search for publicly available GitHub
repositories that contain Q# files and we created a dataset with
1,723 Q# files. Once we collected all the the repositories,
we searched in each repository for files with the extension
.qs, which are the Q# files. Besides the source files, we also
compiled metadata about the repositories from which these
files were taken, such as the owner name, repository name,
and creation date. Figure la presents some statistics about
our dataset.

It is important to note that from the 1,723 Q# files only
244 files were considered for this project, because, in order to
compile a Q# program, a .csproj must be included. This file
details configurations of the compiled program and most of the
collected files require file-specific .csproj files because they
depend on other files, or because they lack the @ Entrypoint
flag (which is the equivalent of a main method in Q#).
Therefore, we created a simple .csproj specifying only the
SDK version and we identified 244 files that can be compiled
with it.

C. Workflow

This project is divided into three stages: data collection,
generation of new programs, and evaluation of the generated
programs. This is depicted in Figure 1b. The first stage, data



collection, represents how we collect data towards training
the model. This stage has been described in the previous
section. Once the files have been collected, we move to the
next stage, generation of new programs, where we prepare
the Q# programs for training, by creating training sequences,
and we train the Sequence-To-Sequence model which has 2
layers with 512 hidden units for each layer. After the model
is trained, we use the original Q# programs to generate the
new programs. In the third and final stage, we compile the
newly 1,000 generated programs in order to compute the Pass
Rate metric. This metric determines how well the model can
generate well-formed files.

III. DESIGN

Looking at Figure 1b we can see that the generation of
new programs can be divided into different phases: Prepare
Data, Sequence-To-Sequence model, and Generate Files. In
this section, we take a closer look at these phases.

A. Prepare Data

The first step is to remove any noise data and format every
Q# file so that it can be split into training sequences. Noise
data is in the form of comments and whitespaces, such as
horizontal tabs, and newlines. Once this process is done, we
split the newly formatted text into sequences with a fixed size,
in our case 50 characters. Then, we separate each sequence to
be a training sequence, i.e., a pair of input-output sequences,
where the corresponding output sequence of an input sequence
is the next character of the input sequence. We append every
training sequence to a unique file that is used for training. We
configure the training to use 80% of the training sequences to
limit over-fitting to the whole model.

B. Sequence-To-Sequence Model

Once the Prepare Data phase is complete, we configure the
training process to learn a generative model over 80% of all
training sequences, in order to avoid overfitting.

Before we set up the sequence-to-sequence model and begin
training, there are a few steps we need to make. The first one is
to vectorize the data. Input and output sequences are separated
and every unique character is stored. This is fundamental,
since the model can not comprehend characters, and thus
the next step is to encode our sequences of characters into
sequences of integers. This means that each unique character
will be assigned a specific integer value. Then, the sequence-
to-sequence model is defined and the training process is ran
during 50 epochs.

C. Generate Files

We use the learnt Sequence-to-Sequence model to generate
1,000 new Q# programs. We built a pipeline for accomplishing
this endeavor, which starts by picking a file from our dataset.
Once a file is chosen, it is divided into three parts. The first
part is the Head, which is the beginning of the file until the
second part is reached. The second part is picked randomly
and is a sequence with fixed size, which will be the input for

the model. This input is known as Prefix. The third and final
part is known as 7ail and it starts after the first ; is found after
the Prefix. This means that after the Prefix there is some part of
the text that is missing. This is what the model is going to try
and predict (Generated). Thus, the output file can be created as
Head + Prefix + Generated + Tail. Figure 2b shows an example
of a file generated using this strategy, using as a starting point
the file shown in Figure 2a. Note that, highlighted in yellow,
is what the model predicted that should follow after Int {.

IV. EVALUATION

In this section we present the experimental setup and the
results obtained.

A. Experimental Setup

The Sequence-to-Sequence model had 2 layers and there
were 512 LSTM units per layers, with a dropout rate of 0.2.
This setup follows closely the same setup of DeepFuzz [7],
which adopted the same model to generate C programs. We
trained the model for 50 epochs on a machine with a 2.40Ghz
Intel(R) Xeon(R) Silver 4120R CPU and 64 GB of memory.
The model was implemented using Python and the TensorFlow
library. In addition, to compile the the Q# files, the NET Core
SDK 3.1 was used.

B. Pass Rate

For the purpose of this preliminary project, the main goal
is to evaluate how well the model performs in generating
syntactically valid Q# programs. Therefore, we only consider
the Pass Rate, a metric that measures the ratio of syntactically
valid programs among all of the newly generated programs.
This metric provides an insight on how well the network has
trained over the input sequence.

Our generation strategy greedily predicts the next character
and inserts the newly generated sequence based on the same
input sequence at one place into the original well-formed
program. This prediction uses a model that has been trained
over 50 epochs. After collecting the compilation results for
each of the 1,000 files, we obtained a Pass Rate of 79.6%.
This means that out of the 1,000 files only 796 files were
syntactically correct. This result is close to DeepFuzz, which
reports a Pass Rate of 82.63% and better than Learn&Fuzz,
which reports 70%. We argue that the lack of data, and the
adopted generation strategy are limitations of this result. While
DeepFuzz considered 10,000 C files and Learn&Fuzz 63,000
non-binary objects, we used only 244 out of the 1,723 Q#
files. The model is predicting the likeliest next character after a
sequence of characters. It is possible that the sequence that has
been given to the model is an entirely new sequence, which
the model has not seen yet, due to the lack of data during
training. Hence, the model may predict bad characters for
this new sequence, creating syntactically incorrect sequences,
i.e., syntactically incorrect files. The adopted strategy also has
some limitations. First, the predicted sequence of characters
may be the exact same of the original file, hence the newly
file will be a copy of the original. Second, the model may also



namespace QuantumRNG { open Microsoft.Quantum.Canon;

< open Microsoft.Quantum.Intrinsic; open

!

Microsoft.Quantum.Math; open
Microsoft.Quantum.Measurement; open
Microsoft.Quantum.Math; open
Microsoft.Quantum.Convert; operation
GenerateRandomBit () : Result { use g = Qubit () {
H(qg); return MResetZ(q); }
SampleRandomNumberInRange (min:

} operation

rerrid

Int, max : Int)

repeat { mutable bits =

!

Int { mutable output = 0;
new Result[0]; for idxBit in 1..BitSizeI (max) { set
bits += [GenerateRandomBit ()];

ResultArrayAsInt (bits); } until

output <= max); return output;

} set output =
(output >= min and

} Q@EntryPoint ()

: Int {

Message ($"Sampling a

operation SampleRandomNumber () let max =
50; 10;

number between {min}

let min = random

and {max}: "); return

L

SampleRandomNumberInRange (min, max); } }

(a) Original file

namespace QuantumRNG { open Microsoft.Quantum.Canon;

<~ open Microsoft.Quantum.Intrinsic; open

!

Microsoft.Quantum.Math; open
Microsoft.Quantum.Measurement; open
Microsoft.Quantum.Math; open
Microsoft.Quantum.Convert; operation
GenerateRandomBit () : Result { use g = Qubit () {
H(qg); return MResetZ(q); }
SampleRandomNumberInRange (min:
Int {
new Result[0]; for idxBit in 1..BitSizel (max) {
bits += [GenerateRandomBit ()];
ResultArrayAsInt (bits); } until
output <= max); return output;

} operation

rerrid

Int, max : Int)

repeat { mutable bits =

!

mutable output = 0;
set
} set output =
(output >= min and
} QEntryPoint ()
Int {
Message ($"Sampling

operation SampleRandomNumber ()
10; 10;

a random number between {min}

rerrrid

let min = let min =

and

!

{max}: "); return

!

SampleRandomNumberInRange (min, max); } }

(b) Generated file

Fig. 2: Examples of two valid Q# files: (a) a file from our dataset; (b) a file generated by our model based on the file shown

in (a)

not predict when to close brackets or quotes. An example is
when the prefix sequence given to the model has a quote (“):
the model keeps predicting other characters and might never
close the quote. This will generate a syntax error once the new
file has been created. This shows the importance of creating
different strategies that overcome these limitations.

V. RELATED WORK

The closest work to our project is DeepFuzz, a grammar-
based fuzzing tool based on a generative Sequence-To-
Sequence model [7]. The goal of DeepFuzz is to produce
well-formed C programs towards fuzzing C compilers such
as the GCC. Other work has been done in machine translation
[9], such as Learn&Fuzz, which shows how to automate the
generation of PDF files to fuzz the PDF parser, using a Char-
RNN Language model [10].

Regarding datasets with quantum programs, Bugs4Q is
a benchmark of thirty-six real, manually validated Qiskit
bugs [12]. Also, recent work has been done towards QBugs,
a novel infrastructure, which will provide a variety of in-
formation, from source code, test cases, and bug reports to
configuration files and scripts [13]. However, to the best of
our knowledge, QBugs is not yet publicly available.

VI. CONCLUSION AND FUTURE WORK

We created a new dataset consisting of 1,723 Q# programs,
which can be used by the growing community of Quantum
Software Engineering. We also implemented and tested a
generative Sequence-To-Sequence model to generate well-
formed Q# programs. We found that 79.6% of 1,000 files
generated were syntactically correct. Despite the limitations
already discussed, we believe that the generative Sequence-To-
Sequence model proposed can be a viable option to create new
Q# programs. In future work, we intend to grow the dataset
and implement new generation strategies.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]
[9]

[10]

(11]

[12]

[13]

REFERENCES

Google, “A Python framework for creating, editing, and invoking
Noisy Intermediate Scale Quantum (NISQ) circuits..” https://github.com/
quantumlib/Cirq, 2021. [Online; accessed 10-April-2021].

Microsoft, “Quantum Development Kit.” https://azure.microsoft.com/
en-us/resources/development-kit/quantum-computing//, 2021. [Online;
accessed 10-April-2021].

K. Svore, A. Geller, M. Troyer, J. Azariah, C. Granade, B. Heim,
V. Kliuchnikov, M. Mykhailova, A. Paz, and M. Roetteler, “Q# enabling
scalable quantum computing and development with a high-level dsl,” in
Proceedings of the Real World Domain Specific Languages Workshop
2018, pp. 1-10, 2018.

G. Aleksandrowicz, T. Alexander, P. Barkoutsos, L. Bello, Y. Ben-
Haim, D. Bucher, F. Cabrera-Hernandez, J. Carballo-Franquis, A. Chen,
C. Chen, et al., “Qiskit: An open-source framework for quantum
computing,” Accessed on: Mar, vol. 16, 2019.

J. Chen, J. Patra, M. Pradel, Y. Xiong, H. Zhang, D. Hao, and L. Zhang,
“A survey of compiler testing,” ACM Computing Surveys (CSUR),
vol. 53, no. 1, pp. 1-36, 2020.

I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning
with neural networks,” Advances in neural information processing
systems, vol. 27, 2014.

X. Liu, X. Li, R. Prajapati, and D. Wu, “Deepfuzz: Automatic generation
of syntax valid ¢ programs for fuzz testing,” in Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 33, pp. 1044-1051, 2019.

I. Sutskever, J. Martens, and G. E. Hinton, “Generating text with
recurrent neural networks,” in ICML, 2011.

G. Klein, Y. Kim, Y. Deng, J. Senellart, and A. M. Rush, “OpenNMT:
Open-source toolkit for neural machine translation,” in Proceedings of
ACL 2017, System Demonstrations, pp. 67-72, 2017.

P. Godefroid, H. Peleg, and R. Singh, “Learn&Fuzz: Machine learning
for input fuzzing,” in 2017 32nd IEEE/ACM International Conference
on Automated Software Engineering (ASE), pp. 50-59, IEEE, 2017.

K. Cho, B. van Merrienboer, C. Gulcehre, F. Bougares, H. Schwenk, and
Y. Bengio, “Learning phrase representations using rnn encoder-decoder
for statistical machine translation,” in Conference on Empirical Methods
in Natural Language Processing (EMNLP 2014), 2014.

P. Zhao, J. Zhao, Z. Miao, and S. Lan, “Bugs4Q: A benchmark of real
bugs for quantum programs,” in 202/ 36th IEEE/ACM International
Conference on Automated Software Engineering (ASE), pp. 1373-1376,
IEEE, 2021.

J. Campos and A. Souto, “Qbugs: A collection of reproducible bugs
in quantum algorithms and a supporting infrastructure to enable con-
trolled quantum software testing and debugging experiments,” in 2021
IEEE/ACM 2nd International Workshop on Quantum Software Engineer-
ing (Q-SE), pp. 28-32, IEEE, 2021.



