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Abstract Interactive Narrative (IN) is an emerging application of automated
planning, in which a planning domain is used to generate a consistent chain of
narrative actions that constitute a plot structure. The task of creating narra-
tive planning domains has been identified as a bottleneck which is hampering
further development of the field. This stems from the difficulties faced by hu-
mans authoring such planning domains due to the need to provide the range of
alternative content, such as actions, which are required to support the impor-
tant properties of diversity and robustness. Narrative planning domains must
be capable of generating diverse sets of narratives to ensure system replaya-
bility, and they must also be able to respond robustly in the face of narrative
execution failure due to user interaction.

In this paper, we introduce a novel approach to the development of narra-
tive planning domains based on the automatic expansion of a baseline planning
domain through application of principled operations applied to both operators
and predicates. We overview two such operations in this paper. The first of
these, anton for antonymic operators, is based on the generation of con-
trary operators that can be invoked in the face of action failure, and whose
structure is derived from a model of state transitions triggered by the original
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operator. Since the intention is for additional operators to be incorporated to
the baseline, human-authored, domain model, the generated contents should
be human-readable. This is achieved by using combined linguistic resources to
access antonyms of predicates occurring inside operators, and parsing them
from and into hyphenated units. The second operation, part of the same ap-
proach, referred to as thype, generates variants of operators by exploring
type hierarchies for the main concepts associated with individual operators;
the resulting concepts being fully integrated into a new operator’s structure.

Our evaluation procedures are directly derived from the target properties
of narrative planning domains, which are diversity and robustness, the former
being measured through plot diversity and the latter, plot continuation follow-
ing planned action execution failure. We used published narrative domains as
datasets for these evaluations. Results demonstrated strong generative ability,
and even more significant plan completion following action failure. Moreover,
our evaluation demonstrates the synergic nature of anton and thype when
applied simultaneously. Future work will focus on improving the integration of
anton and thype operations through better balance between linguistic and
conceptual hierarchies.

Keywords Virtual Agents · Narrative Planning · Domain Modeling

1 Introduction

Interactive Narrative (IN) has emerged as a novel application for Artificial In-
telligence (AI) techniques, whereby virtual character behaviours can be gener-
ated, controlled and turned into media content. One AI technique of particular
interest is the use of AI Planning to generate plans corresponding to character
behaviours which are then presented to human audiences using, for example,
2D or 3D graphics or text (Riedl and Young, 2010; Porteous et al., 2010;
Wang et al., 2018; Yao et al., 2019). Planning is a powerful technology for
such applications as it has a good representational fit, helps ensure causal-
ity (important for appropriate virtual character behaviour) and offers flexible
narrative generation possibilities (Young, 1999).

While most previous work on Planning has emphasised the search for op-
timal solutions in terms of plan length or resources, these objectives do not
apply to IN. When using planning for IN, well-formedness remains essential to
guarantee consistency and causality, yet optimality is replaced by other quality
criteria which relate to the shape of the planning trajectory itself (Porteous
et al., 2011). Another important aspect is the ability of narrative planners to
produce a range of potential solutions to ensure diversity, or to compensate for
plan failure following user interaction. Some researchers have proposed dedi-
cated planning architectures providing specific support for narratively relevant
phenomena, such as intentional planners (Riedl and Young, 2004). However,
it has also been demonstrated that state-of-the-art mainstream planners can
support IN, with the focus for the development of narrative generation system
being on the formalisation of narrative planning domains.
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Describing narrative planning domain models is a challenging knowledge
elicitation and modelling task. This is reflected in the development of tools to
assist in the modelling of domains such as the tools proposed by Vaquero et al.
(2013) and by Dolejsi et al. (2018), as well as approaches to the automated
creation of models (Cresswell and Gregory, 2011; Wu et al., 2007; Lindsay
et al., 2017). These general challenges of domain modelling are further com-
pounded for IN applications due to two issues which we refer to as robustness
and diversity. Domain models for use in IN systems need to be robust, meaning
that they must cover world state variations that result from user interactions
making dynamic changes to the narrative world and also that they must be
sufficient to enable appropriate recovery from such interactions, for example
by plan repair or replanning. Domain models for use in IN systems also need
to be diverse, meaning that they must allow for the generation of diverse sets
of narrative plans, in order to ensure novelty, creativity and replayability.

The issues of robustness and diversity have created a paradoxical situa-
tion for entertainment applications: on the one hand, domain model content
is provided by “authors” who may be less familiar with planning technologies;
and on the other hand, the increased complexity of modelling narrative plan-
ning domains that ensure robustness and diversity requires planning expertise.
Previous work on addressing this situation has included the development of
authoring aids based on planning domain consistency checking and simula-
tion (Pizzi and Cavazza, 2008) or visual authoring of meta-planning elements,
which addressed plan diversity (Porteous et al., 2011), although not at the
level of domain elicitation.

One specific difficulty, often associated with robustness and diversity of
planning domains, is the need to handcraft more than is required by a plan-
ning formalisation of narrative actions and types of narrative objects. In other
words, trying to anticipate the consequences of plan failure and the remedial
actions or objects needed, or describing several potential alternatives instead
of one. This observation has led us to explore the potential to assist the mod-
elling process through automated extension of partially developed models, an
approach that remains largely unexplored. Domain model extension has much
to offer for the development of robust and diverse models, as the authoring
process by which baseline narratives are translated into planning models faces
the difficulty of encoding, beyond the definition of a baseline narrative, those
actions and types of objects which can underpin narrative variants. In other
words, what has been described as the paradox of interactive narrative, namely
the need to reconcile narrative consistency with action substitution, also ap-
plies to its authoring component, a situation which has hitherto not received
sufficient attention.

Thus the objective of our approach is to operationalise narrative action and
object substitution during narrative plan authoring. To that effect, we have
defined a number of high-level operations that can be applied to the default
domain model forming part of a “baseline plan narrative”, whose outcome is
to produce alternative, human-readable domain model content. Importantly,
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these operations are inspired by the above mentioned requirements of robust-
ness and diversity. These high-level operations detailed in this paper are:

Generating Alternative Antonymic Actions: to address this we introduce an
operation inspired from negation that aims to generate contrary operators
which can be used in narrative variants where a default narrative action
cannot be executed. This transformation operates both on the operator’s
post-conditions structure and the labelling of constituent predicates. As the
contrary operators are generated through analysis of antonym relations,
this operation is referred to as anton.

Generating Alternative Types of Narrative Objects: we introduce an operation
based on the generalisation of default narrative objects in the domain
model. The aim is to generate alternative types of objects with which
to specialise operators. These domain model extensions are generated via
analysis of hypernym and hyponym relations and referred to as thype.

We introduced the operations anton and thype in earlier work, Porteous
et al. (2015) and Porteous et al. (2020) respectively. In this paper we draw
these operations together and discuss in the context of a unified framework.

Both operations are influenced by linguistic and ontological approaches
and can be seen as the application of antonymy, synonymy, hypernym and
hyponymy relations to domain model content via the semantic labels that best
describe them, although the transformations affect the larger domain model
itself e.g. from the action label but affecting the entire operator structure.

An additional objective of our approach is for newly generated domain
model extensions to be “human-readable”, as the authoring and debugging
process of narrative domain models is still meant to be supervised by a hu-
man author, as well as supporting exchange of planning domains between
research groups. The above operations all involve generating new predicates,
new named operators and types of narrative objects, taking as a starting point
content labels from the default baseline domain model, and this process is
heavily based on the use of linguistic resources.

The remainder of the paper is organised as follows. We begin in the next
section with a motivating example which will be used as illustration through-
out. In Section 3 we discuss closely related work and follow this in Section
4 with an overview of the planning framework and related background. Sec-
tions 5 and 6 present detailed overviews of anton and thype respectively. In
Section 7 we define a modular and extensible framework which allows for the
combination of multiple off-line generated domain model extensions. Section
8 presents the results of evaluation of anton and thype domain model ex-
tensions on a series of benchmark narrative domains. We conclude and discuss
directions for future work in Section 9 at the end of the paper.

2 Motivating Example

Central to our approach to domain model extension is a rather traditional
framework, albeit rarely presented as such, in which a narrative domain is de-
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Fig. 1: Aladdin Narrative Examples (Part I): 1 A baseline narrative generated
using original domain model M; 2 For the same initial state and goal, alter-
nate actions and types of objects increase robustness, enabling recovery when
user changes cause love-spell* to go wrong (Jasmine ends up loving Aladdin
rather than Jafar) and alternate actions and types are required for narrative
continuation (the new type, fairy, casts spells so jasmine falls out of love with
Aladdin and in love with Jafar); 3 Diverse narrative example, with alternate
actions and types** leading to a very different ending (Jasmine puts the genie
back in the lamp, slays the troll and lives happily, singly ever after).
Domain Model (Part II): shows original and thype and anton extended
model; 4 alternate types of objects generated via Hypernym and Hyponym
relations (e.g. fairy and troll); 5 alternate actions generated from antonym
relations (e.g. dismiss and hate-spell). See text for details.
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veloped around a “baseline narrative” often inspired from a well-known literary
or filmic work. Thus, as motivation and to illustrate the sorts of domain model
extensions that can be generated, we present an example using a baseline nar-
rative domain model based on the well-known Aladdin folk tale. This domain
model will also be used as a running example throughout the paper. This
domain was selected due to its familiarity, previous use in narrative research
(Riedl and Young, 2010; Teutenberg and Porteous, 2013) and suitable scope
for experimentation. It features a range of different types of virtual characters
and objects such as knights, princesses, dragons, genies, magic lamps and so
on. We have created a baseline domain model for this domain with which it
is possible to generate a range of narrative plans that see virtual characters
travelling around, slaying dragons, falling in love, freeing genies and so on.
As illustration, an initial narrative generated for this domain might proceed
as shown in Figure 1 Part I 1 , with narrative actions that include having
King Jafar fall in love with Princess Jasmine, subsequently freeing Blue the
genie from the magic lamp, ordering Blue to cast a love spell for Jasmine to
fall in love with him, slaying a dragon and marrying to conclude the narra-
tive variant. The figure illustrates domain model extensions that address both
robustness and diversity as follows:

Robustness: In interactive narrative systems user interaction can change the
state of the planning world and hence necessitate re-planning or repair (as
in Young’s “gun” example (Young, 1999)). Thus, domain models used in
such systems must be robust: capable of responding to dynamic changes
to the story world and continuing a narrative through to the intended
ending regardless of user interaction. One way in which robustness can
be promoted in a domain model is through the inclusion of alternative
actions and types of narrative objects which go beyond those required
for a baseline narrative, and which enable the generation of alternative
courses of action from points of narrative execution “failure” onwards. As
illustration, Figure 1 shows user interaction changing the state of the story
world so that Princess Jasmine loves Aladdin and not Jafar (highlighted **
in 1 and 2 ). The effect of this user interaction is to render the original goal
impossible to reach. Our insight is that capturing alternatives for narrative-
world remediation would make the model more robust and enable narrative
continuation.
The extensions we explored are:
– anton generated actions capturing reverse state transitions. In the

figure this is illustrated with actions such as hate-spell (see 5 in Figure
1). This action captures the state transition from love to hate (the
reverse of love-spell with an appropriate label for the content). The
resultant action allows generation of a narrative with a spell cast so that
Jasmine hates Aladdin, allowing for the continuation of the narrative
to the original goal as shown.

– thype generated alternative types of virtual characters and narrative
objects that can be used to instantiate narrative actions. In this exam-
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ple, Figure 1 shows the generation of the type fairy which allows for
regeneration of a narrative which has the fairy casting a love-spell which
makes Jasmine fall back in love with Jafar and allowing for continuation
through to the original goal (see 2 and 4 in Figure 1).

Diversity: This relates to the ability of a narrative domain model to allow the
generation of diverse sets of narratives to allow for system replayability.
Domain models can be made more diverse with the addition of both an-
ton and thype extensions as the addition of new narrative actions, and
new types of virtual characters and narrative objects all open up a wider
range of narrative possibilities. An important advantage of automating the
process of domain model extension is the requirement for generated nar-
ratives to be consistent: domain model consistency is something which is
enhanced via system generated extensions as it removes the possibility of
human error. In the example shown in Figure 1 Part I 3 , in order for an In-
teractive Narrative system to produce multiple story variants, the domain
model requires sufficient content to allow for generation of story lines that
deviate from the baseline. As illustration, consider the “baseline narrative”
shown in the figure where the king Jafar falls in love with Princess Jasmine
and frees Blue the genie from the magic lamp, gets Blue to cast a love spell
so that Jasmine falls in love with him so they can marry at the end of the
narrative. A very different narrative leading to a different narrative goal
is shown in Part I 3 of the figure. In this narrative variant, Princess Jas-
mine puts the genie back in the lamp, takes the magic lamp, travels to the
cave, slays the troll and lives happily, single, ever after. This variant uses
anton generated narrative action dismiss, and an instance of the thype
generated alternative type of virtual character troll, called troll11.

These automatic suggestions simplify the authoring process while retaining the
combinatorial properties of plan-based generation (as opposed to branching
narratives). The underlying idea is to use natural language labels of planning
domain elements to generate related concepts using lexical relations between
these labels and other terms in online lexical resources. Hence our approach
identifies plausible candidate types of virtual characters and narrative ob-
jects based on information about semantic relations such as hypernym (more
general) and hyponym (more specific) from linguistic resources (as shown for
fairy and troll in Figure 1). This is predicated on the fact that linguistic
hierarchies such as ConceptNet (Liu and Singh, 2004; Speer et al., 2017), can
be used as partial ontologies and for common sense reasoning.

3 Related Work

Automated domain model extension and creation is a topic of current inter-
est in the AI planning community, in part due to increasing awareness that
building domain models is challenging, time consuming and an obstacle to the

1 New instances of thype generated types are named using as described in section 6.
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further fielded application of planning technology (Zhuo and Kambhampati,
2013). Recent work in this area has been aimed at learning planner action
models from correctly observed plan traces (Amir and Chang, 2008; Cresswell
and Gregory, 2011; Zhuo et al., 2010). However, this work has limited appli-
cation for narrative domains which do not share the same consistency and
alignment with real-world domains as do more traditional planning domains
such as “logistics” or “rovers”.

Also, a growing body of work has considered the implications of incomplete
models. Cashmore et al. (2015) and Young et al. (2017) extend planning mod-
els during execution in order to incorporate initially unknown information.
In the approach of Cashmore et al. (2015), an ontology captures the objects,
with their types and attributes, and underpins the construction of the planning
model. When a new object is detected by the system, the object is added to
the ontology. The object can be used in replanning, which can lead to shorter
plans. Moreover, Cashmore et al. (2015) assume that the types of objects are
known a priori, whereas a more general framework is developed by Young et al.
(2017, 2016), where the surrounding objects are used to build a context and
a general image labeller is used to identify objects. Model-lite planning (Yoon
and Kambhampati, 2007; Kambhampati, 2007) is also motivated by the im-
practicality of always completely defining a planning model upfront. These
works do consider incompleteness within the planning framework itself, but
differ with respect to focus (e.g. such things as reducing planning length) and
nature of the target extensions which are less concerned with issues such as
diversity and hence are not as applicable in Interactive Narrative.

Also related is the work on excuse generation (Göbelbecker et al., 2010)
which was later extended to planning task revision (Herzig et al., 2014) which
considers how a given problem description can be updated when a plan solution
is not possible. We observe that the approaches of Göbelbecker et al. (2010)
and Herzig et al. (2014) might also be used to generate extended domain
models: creating new content and extending the model on the fly at run-time.
In contrast, we present a process for determining how a domain model can be
extended during off-line processing, which we see as being complementary to
on-line model extension.

We observe that an approach adopted in some Interactive Narrative sys-
tems is the use of experience managers to ensure that aesthetic properties of
the narrative are maintained in the presence of user interaction. Of relevance to
the work we present in this paper are plan-based approaches, via Narrative Me-
diation (Riedl and Young, 2006; Robertson and Young, 2019). The mediation
process is one of reasoning about possible user interactions, i.e. alternatives to
system planned actions, that would necessitate some repair or replanning in
order to guide the narrative to a suitable alternative ending. In the work we
present here, our goal is to help develop rich narrative planning models and
thus could be used in combination with these mediation approaches to help
develop suitable models for the mediation planning process.

In the area of narrative generation there has been increasing work aimed
at automated creation of narrative content. A popular approach has been the
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gathering of story elements via crowdsourcing, an approach which can yield
abundant content. For example, the Scheherazade system of Li et al. (2013)
employ this approach to acquire typical story elements which can be assembled
as plot graphs and used in a process of story generation. With ScenarioGen
(Sina et al., 2014) crowdsourcing was used to gather a database of scenarios
of everyday activities and likely replacements for use within a serious game
context. Orkin and Roy (2012) use a crowdsourcing approach for the hand
annotation of logs from user sessions with the Restaurant Game for subse-
quent use in automating character interactions with human participants in a
dialogue-based narrative setting. An alternate to crowdsourcing aims to obtain
narrative content through mining of weblogs and story corpora: the Sayany-
thing system of Swanson and Gordon (2012) selects narrative content on-
the-fly from a corpora of weblogs in response to user text-based interaction;
whilst the approach of McIntyre and Lapata (2009) attempts to generate nar-
ratives using knowledge mined from story corpora for a particular genre. Our
automated mechanism for diversification of narrative planning actions through
antonymy differs from these approaches in that it aims to discover alternatives
around baseline plots (which themselves could be drawn from existing linear
narratives).

Another area of related work to our antonym-based approach is that aimed
at the computational creation of content for use in applications requiring nar-
rative generation. Examples of this include the use of conceptual blending in
the creation of novel artefacts for use in narrative generation (Li et al., 2012;
Harrell et al., 2010) and visual narrative generation (Pérez y Pérez et al.,
2012).

We observe that the general issues that surround the creation of planning
models have led to the development of a number of tools to assist the process
such as the post-design framework of Vaquero et al. (2013) and the pddl plug-
in to vscode of Dolejsi et al. (2018), along with approaches to support the
maintenance of existing models (Bryce et al., 2016) and other approaches that
aim to automate the process entirely, such as the locm family of algorithms
(e.g. (Cresswell et al., 2009) and (Cresswell and Gregory, 2011)), the framer
approach of Lindsay et al. (2017), Janghorbani et al. (2019) and Walsh and
Littman (2008). In our work we aim to automatically extend existing domain
models, thus it could be used in combination with these approaches to extend
them with the potential to enhance robustness.

As far as we are aware, the operations anton and thype which we have
introduced in earlier work, Porteous et al. (2015) and Porteous et al. (2020)
respectively, and which we draw together in this paper, are the only approaches
that have sought to automatically generate extensions to partially developed
narrative domain models.
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4 Planning Framework/Background

In this work we use the deterministic planning language of pddl (McDermott
et al., 1998), which is separated into two parts: the domain model, a defini-
tion of the problem domain that defines the world and its behaviours; and an
explanation of the specific problem to be solved within that world. A domain
model is a tuple, M = 〈A,P〉, defining the sets of actions, A, and predicates,
P. A parameterised action, A ∈ A, is represented by a unique symbol (action
name), a list of typed variables (parameters), and the action’s pre and post-
conditions. The pre-condition is a formula that must hold for the application
of the action and the post-condition defines the action’s positive and negative
effects. The pre-conditions use first order predicate logic and we assume these
are conjunctions of predicates and their negations. Similarly, we also assume
post-conditions are conjunctions of predicates and their negations. Any vari-
ables used in the actions (i.e., in the pre- or post-conditions) must be included
in the parameters of the action. Examples of parameterised actions are pre-
sented in Figure 2. A problem model is a tuple, P = 〈O, s0, g〉, defining the
typed objects, O, the initial state, s0 and the goal function, g. An action is
called a ground action if all its parameters are replaced with objects from O.

A solution to the planning problem is a sequence of ground actions that
when applied to the initial state lead to a state that satisfies the goal. We say
a goal is reachable from a state, s, if there exists such a sequence of ground
actions and otherwise, s is a deadend.

A library of language extensions, E, consists of functions, e : M 7→ Me,
such that the model, M, is extended through some process into a richer model,
denoted Me. For example, a language extension function, add-no-op, would
extend a model with a new operator, called no-op, with an empty condition
and effect. The main contribution of this work are two extension functions
anton and thype which are described in the following sections.

5 ANTON: Generating Alternative Antonymic Actions

In this section we overview a domain model extension operation for the gener-
ation of alternative narrative actions starting from a baseline domain model.
The actions in a baseline narrative domain model can be seen as specifying
the properties that different types of domain objects can occupy and the ways
in which these can be changed. Thus the contrary is also true: the narrative
actions specify those properties that cannot be changed and those transitions
that cannot be reversed without compromising the narrative experience (this
is, of course, strongly dependent on narrative genre). For example, in the Al-
addin story as shown in Figure 1, genies can be trapped in a magic lamp (as
opposed to an ordinary one) and can be either trapped or freed (by being sum-
moned from the lamp). Princesses are beautiful and can be single or married.
However different variants of the story require contrary transitions and prop-



Automated Narrative Planning Model Extension 11
A
C
T
IO

N
S

(:action fall-in-love :parameters (?m - male ?p - princess ?l - location)
:precondition (and (single ?m) (beautiful ?p) (alive ?m) (alive ?p) ...)
:effect (and (loves ?m ?p)))

(:action summon :parameters (?p - person ?g - genie ?t - thing)
:precondition (and (confined ?g) (magic ?t) (has ?p ?t) (at ?p ?l))
:effect (and (at ?g ?l) (controls ?p ?g) (not (confined ?g))))

(:action love-spell :parameters (?g - genie ?p1 ?p2 - person)
:precondition (and (not (confined ?g)) (not (loves ?p1 ?p2)) (alive ?g) ...)
:effect (and (loves ?p1 ?p2)))

(:action marry :parameters (?m - male ?p - princess ?l - location)
:precondition (and (loves ?m ?p) (loves ?p ?m) (single ?m) (single ?p) ...)
:effect (and (married ?m ?p) (married ?p ?m) (not (single ?m)) (not (single ?p))))

(:action slay :parameters (?k - knight ?m - monster ?l - location)
:precondition (and (at ?k ?l) (at ?m ?) (alive ?k) (alive ?m))
:effect (and (not (alive ?m))))

T
Y
P
E
S

agent location thing - object knight king - male
person genie dragon - agent
princess male - person

Fig. 2: Selected actions and types from the Aladdin Domain. Actions specify
ways the story world can change e.g. males can fall-in-love with a princess if
certain things hold in the story at that point, such as being beautiful. Types
form a hierarchy which plays a role in the propagation of conditions e.g. a
knight can slay a monster but only genies can be summoned from a lamp.

erties to allow for such things as ugly princesses becoming beautiful, married
princesses becoming single and genies being put back into magic lamps.

These contrary properties and transitions are important since they may
be required in order to continue the presentation of an ongoing narrative in a
dynamic environment, as for the example in Figure 1. Hence our approach to
content creation seeks to identify core narrative elements in the input domain
model whose negation impacts story progression (section 5.1) and then to use
these as candidate transitions for content creation (section 5.2).

5.1 State Transition Analysis

Starting with an input domain model a set of state transition rules are con-
structed which represent the partial state transitions that are possible for
each of the different types of objects in the model. This is related to the iden-
tification of Finite State Machines and transition rules with tim (Fox and
Long, 1998) and analysis of Domain Transition Graphs in fast downward
(Helmert, 2006). Building on (Fox and Long, 1998), the transition rules are
specified in terms of properties, where a property is a predicate subscripted by
a number between 1 and the arity of the predicate, so that every predicate of
arity n defines n properties. For typed PDDL domains we extend this to refer
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to the type of a property: for a property with subscript i its type corresponds
to the type of the argument in predicate position i. For example,

(controls ?p - person ?g - genie),

defines the properties controls1 and controls2, of type person and genie respec-
tively. The analysis requires special treatment for negative preconditions (Cress-
well et al., 2002). Predicates that are used as negative preconditions (e.g., loves
in the love-spell action in Figure 2) are each paired with a new predicate that
represents the negative of the predicate. We use the predicate name with a
prefix ‘¬’ to denote these new predicates (e.g., loves is paired with ¬loves).
As a consequence, these predicates lead to the construction of negative prop-
erties (e.g., ¬loves1), allowing the approach to operate correctly in the case of
negative preconditions.

Transition rules take the form E ⇒ S → F (read as “E enables the transi-
tion from S to F”) and where the three components are bags of zero or more
properties built for each action in the domain model and for each type of ob-
ject in the actions’ parameters. Empty bags are denoted { } in the following
examples. The rules are constructed as follows2:

E (enablers) pre-condition properties unchanged by the action
S (start) pre-condition properties deleted (i.e. lost) by the action
F (finish) properties that are achieved (gained) by the action

As illustration, consider the Aladdin domain (Figure 2), and the identification
of transition rules for the action love-spell. The action parameters ?g - genie
?p1 ?p2 - person are considered as follows:

?g The action contains only the property ¬confined1 of type genie. This is
unchanged by the action and is added to E. There are no other properties
hence S and F are empty. Since this transition rule is empty (does not
describe a state change as described above), it is discarded.

?p1 The properties alive1, ¬loves1 and loves1 are of type person. The prop-
erty alive1 is required and not changed by the action and is added to E,
¬loves1 is deleted by the action and added to S, and loves1 is achieved
by the transition so is added to F. The resulting rule that is output is as
follows: alive1 ⇒ ¬loves1 → loves1 (see rule #1 in Figure 3).

?p2 The properties alive2 (enables), ¬loves2 (deleted) and loves2 (achieved)
are identified and added to E, S and F. The resulting rule output is:
alive2 ⇒ ¬loves2 → loves2 (see rule #2 in Figure 3).

Hence the analysis of the action love-spell yields 2 transition rules for type
person and none for type genie (rules #1 and #2 in Figure 3 which lists all
the transition rules constructed for the selected actions shown in Figure 2).

2 Note: rules can contain empty components, however any transitions where both S and F
are empty are ignored since they do not describe any change of state for that type of object.
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Type Action State Transition Rules: E ⇒ S → F Rule #

p
er

so
n love-spell alive1 ⇒ ¬loves1 → loves1 1

alive2 ⇒ ¬loves2 → loves2 2
summon has2 at1 ⇒ {} → controls1 3

m
o
n

st
er

slay at1 ⇒ alive1 → {} 4

m
a
le marry loves1,

loves2, ..
⇒ single1 → married1

married2
5

fall-in-love alive1 ⇒ ¬loves1 → loves1 6

p
ri

n
ce

ss marry loves2
loves1...

⇒ single1 → married2

married1
7

fall-in-love beautiful1
at1 alive1

⇒ ¬loves2 → loves2 8

g
en

ie summon alive1 ⇒ in1

confined1

→ controls2
at1
¬confined1

9

Fig. 3: Example State Transition Rules for the Aladdin Domain. Rules rep-
resent how the effects of narrative actions can change the partial states of
different types of objects. Rules take the form E ⇒ S → F where: E is a set
of properties that enable the transition: S are the properties given up by the
transition; and F are properties acquired by the transition. The negative of
a property x, used for analysing negative preconditions, is shown as ¬x. As
an example, for the type person the action summon requires that the person
initially has (a lamp in which the genie is confined) and is at (a location). Note
that this transition is possible for all sub-types of type person (i.e. the types
knight, king and princess).

5.2 Identification of Core Transitions

Once constructed the transition rules are searched to identify contrary transi-
tions and properties which suggest core candidate transitions for action gen-
eration. We consider each of these in turn in the following subsections.

5.2.1 Candidate Actions from Contrary TRANSITIONS

For any type of object for which a transition is specified in the rules we pos-
tulate that the contrary transition has a natural interpretation in the domain
and that we would also expect to find it in the set of transitions. Hence, any
transition whose contrary does not appear in the set of rules is proposed as a
candidate for alternative action generation.

As an example from the Aladdin domain, consider transition rules 1 and
2 for action love-spell and rule 6 for fall-in-love shown in Figure 3. For any
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Antonyms for “marry”

L
in
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es

dissociate divorce separate
Merriam-Webster 1 2 1
BigHuge Thesaurus 0 0 0
Power Thesaurus 1 3 1

Totals 2 5 2

Fig. 4: Antonym selection for the action marry (only those returned by multiple
providers are shown). The weights for each antonym are listed below it. They
are summed and the highest ranked is selected. In this case divorce is selected.

person (or sub-type: king, knight, princess) the transition ¬loves → loves3

can be made via love-spell and in addition for any male (or sub-type king,
knight) the transition can also be made via the action fall-in-love. However for
all these types of objects the contrary transition loves → ¬loves is missing,
i.e. there is no way for a love spell to be undone or for someone to fall out
of love. Hence the actions fall-in-love and love-spell are flagged as candidates
for alternative action generation. All of the transition rules are traversed and
the names of any actions for which contrary transitions are missing are added
to the set of candidates for generation. For the rules in Figure 3 the set of
candidates after this analysis is:

{love-spell, summon, slay, marry, fall-in-love}.

5.2.2 Candidate Actions from Contrary PROPERTIES

The rationale for identifying these candidates is based on consideration of
possible causes of failure of narrative plans when intended action execution is
affected by changes in the environment. From the transition rules shown in
Figure 3 we observe that some properties are only ever required as enablers
and that such properties cannot be changed by the effects of narrative actions
(examples of this are beautiful1 for type princess and alive1 for person). For
such properties, we postulate that their contrary has a natural interpretation
in the domain and hence propose the gaining and losing of such properties
as candidate actions. The natural validity of such transitions becomes more
apparent if one considers typical fairy tale situations in which characters are
killed or forced into eternal sleep, or their appearance is changed. For the rules
in Figure 3, the properties alive1 and beautiful1 are identified. Hence the set
of candidates added after this analysis is:

{gain(alive), lose(alive), gain(beautiful), lose(beautiful)}.

3 For brevity we omit the numeric subscript on the property, however this example applies
equally to both loves1 and loves2.
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5.3 Antonymic Labeling

In order to ensure human readability of the automatically generated PDDL
structures we generate labels for new domain content based on antonyms of the
names of actions and properties in the original domain. The use of antonyms
is justified since candidate actions specify transitions between partial states
that represent opposition such as, (married, single) or (beautiful, ¬beautiful)
and these are used as part of a heuristic approach to action generation which
requires transition to a partial state to include the opposite state as a pre-
condition (this is discussed further in section 5.4).

Labels are generated using antonyms drawn from a range of publicly avail-
able lexical resources (as in (Lin et al., 2003; Turney, 2008)): multiple resources
are used since robustness has been shown to be improved when using this
strategy (Nazar and Janssen, 2010). In our experiments we used the following
on-line lexical resources: WordNet (WN) (Fellbaum, 1998) for synset expan-
sion of queried words, Merriam-Webster (MW), BigHuge Thesaurus (BT), and
PowerThesaurus (PT)4.

5.3.1 Antonyms for Single Words

To generate antonyms, anton sends strings, such as a verb representing an
action name, to each of the linguistic resources. The output of these differs
slightly: WN organises words into synonym groups, called Synsets, which an-
ton uses initially to expand the queried word; MW and BT are organised by
definition and return an HTML page with tagged content which anton parses,
using the tags, to extract the antonyms for each definition of the expanded
query; PT provides a page specially for the antonyms of words and lists these
with an associated score based on the frequency of use of the antonym in texts
and is updated to reflect user opinion.

anton maps the response of each provider into a list of candidate antonyms
with associated integer values. This value signifies the likelihood of the candi-
date being a desired antonym. For MW, BT and WN this value is based on
the number of definitions that are antonymic with the candidate. For PT the
value is a rating of the general use of the candidate in texts. The weights of
the returned candidates are summed to obtain a single weight for each candi-
date, ignoring sources that did not list it (a voting strategy) to get a measure
of the likelihood that the word is a strong candidate. The candidate(s) with
the highest weight is selected to be used for the label. Any ties are broken by
ordering the candidates alphabetically and selecting the first to ensure deter-
ministic selection. As an illustration, Figure 4 shows the process of generating
a label for the contrary action to marry, which in this case is divorce. We note
that divorce is only the contrary of marry if the pair are already married, oth-
erwise the contrary would be something like “refuse to marry” or “not marry”

4 Resources available on-line: WordNet: https://wordnet.princeton.edu, Merriam Web-
ster: http://www.dictionaryapi.com, Power Thesaurus: http://www.powerthesaurus.org,
Big Huge Thesaurus: http://words.bighugelabs.com
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1 Action from Missing Transitions

(:action marry (:action divorce
:parameters (?m-male ?p-princess) :parameters (?m-male ?p-princess)
:precondition (and :precondition (and

(single ?m) (single ?p) (married ?m ?p) (married ?p ?m)•A
(loves ?m ?p) (loves ?p ?m) ...) (motivated-to-divorce ?m ?p) ...)

:effect (and :effect (and•A (married ?m ?p) (married ?p ?m) (single ?m) (single ?p)•B•B (not (single ?m)) (not (single ?p)))) (not (married ?m ?p)) ...)•A
2 Action from Missing Properties

:action become-beautiful (:action become-ugly
:parameters (?p - princess) :parameters (?p - princess)
:precondition (and (not (beautiful ?p))) :precondition (and (beautiful ?p))
:effect (and (beautiful ?p))) :effect (and (not (beautiful ?p))))

3 New Predicates: e.g. replace (not (beautiful ?p) with (ugly ?p)

(:action become-beautiful
:parameters (?p - princess)
:precondition (and (ugly ?p))
:effect (and (beautiful ?p) (not (ugly ?p))))

Fig. 5: Example of Action Generation for candidate actions. 1 For Missing
Transitions new actions are generated using the original action as a template
with original action (marry) and newly generated action (divorce); the name
is generated using anton naming; the pre-conditions are those predicates
achieved by the action•A plus an enabling condition; the positive effects are
the pre-conditions of the initial action•B. 2 For Missing Properties new
actions are generated for: gaining the property, become-beautiful; and gaining
the contrary property (i.e. losing the property), which is named using anton,
in this case the action become-ugly. For more detail refer to text.

(consider Beauty and the Beast). Our heuristic approach, where transition
to a state requires the opposite state as a pre-condition, justifies the use of
antonymy. Relaxing this assumption could form the basis of additional action
creation but is beyond the scope of the work presented in this paper.

Antonymic naming with anton offers the possibility of replacing predi-
cates that appear as negative pre-conditions with new predicates that exactly
complement their positive use, as in (Gazen and Knoblock, 1997). For exam-
ple, consider the negated predicate that appears in the pre-conditions of the
action become-beautiful in Figure 5. If this translation were to be applied to the
domain then this would be replaced with the new predicate so that the action
pre-condition becomes (ugly ?p-princess). Also, the post-conditions require ex-
tension to handle the gaining and losing of the property. As illustration the
updated action is shown in Figure 5 3 . We observe that addition of predicates
via this translation may further enhance domain model surveyability.
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5.3.2 Antonyms for Multiword Expressions

Most of the actions and properties to be renamed in the Aladdin domain are
single words with the exception of fall-in-love and love-spell which have been
named using multiword expressions. Dictionary providers perform poorly with
multiword expressions (Sag et al., 2002) and hence these expressions require
additional processing.

To find antonyms of multiword expressions we pair the individual words
with their antonyms as predicted by the method described above (except for
the case of prepositions, whose candidates we lookup in a small lexicon). For
example, hate-spell yields [(love, hate), (spell, unspell)]. Candidate antonymic
expressions are then generated by enumerating the combinations other than
the original (e.g. (love-unspell, hate-spell, hate-unspell). The most likely can-
didate is selected by estimating probabilities with an n-gram language model
(BerkleyLM; (Pauls and Klein, 2011)) trained on text extracted from we-
blogs. In this example the model estimates that hate-spell is most likely
(P = 3.1 × 10−5) while love-unspell and hate-unspell are both least likely
(P = 1.0× 10−100). Hence hate-spell is returned as the antonym for the mul-
tiword expression love-spell.

5.4 Generating New Actions

5.4.1 Actions from Contrary Transitions

For actions representing “missing” contrary transitions new actions are gen-
erated from the original action named in the set of candidates (as discussed
in section 5.2.1). Here we illustrate this process with reference to the Aladdin
action marry and the generation of its contrary, as shown in Figure 5, which
illustrates the process of extending the set of default actions to create poten-
tial for generating new stories. For the name of the new action the anton
generated label is used: in this case the string marry yields the label divorce.
The parameters for the new action are the same as for the original action. The
rationale for this being that the same objects will participate in the action and
the resulting transitions.

There are two aspects to the construction of the action pre-conditions.
Firstly the set of predicates which are achieved by the original action are
added to the pre-conditions of the new contrary action: recall from the discus-
sion in section 5.3 that this heuristic approach justifies the use of antonymy.
For the action divorce these are the predicates which require that the couple
are already married, labelled•A in Figure 5. The second aspect of the pre-
condition construction is the inclusion of any enabling conditions required for
the transition, however the precise nature of these condition(s) is unclear: for
example, are they the same or different to those for the original action? The
Aladdin domain exhibits instances of both possibilities: the enabling condi-
tion for divorce is unlikely to be the same as for marry whereas it may well
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be the case that the same enablers might be required for summon-ing the ge-
nie from the lamp and putting it back in. Our solution, for the purposes of
experimental evaluation and automation of our approach, was to introduce a
generic enabling condition capturing the requirement of the necessary moti-
vation to participate in the action formed by prefixing the anton generated
action name with motivated-to and introducing an additional action to en-
sure the enabling condition can be achieved (as illustration see the predicate
motivated-to-divorce in Figure 5).

The post-conditions for the new action come directly from the original
action: the positive post-conditions are the predicates that are deleted by the
original action (e.g. (single ?m) is deleted by marry and achieved by divorce);
and the negative post-conditions are the predicates that are achieved by the
original (e.g. (married ?m ?p) is achieved by marry and hence deleted by
divorce).

5.4.2 Actions from Contrary Properties

For candidate actions that represent the gaining or losing of a property then
new actions are generated to enable these transitions. Here we illustrate this
process for the candidate actions to gain and lose the property beautiful (dis-
cussed earlier in section 5.2.2).

For actions representing gaining a property the name is the property label
prefixed with become and a single parameter variable of the type of the prop-
erty. The action pre-condition is the negation of the property, since this action
represents the transition from a partial state where the property is absent.
Since the property is being gained, there is a single positive post-condition,
the property itself. This is illustrated for action become-beautiful in Figure 5.

For actions representing losing a property (or the gaining of the contrary
property) the name is generated from the anton label prefixed with become,
there is a single parameter variable of the appropriate type for the prop-
erty, the pre-condition is the original property and there is a single negative
post-condition representing the losing of the property (as illustration, action
become-ugly is shown in Figure 5).

As discussed earlier (section 5.3) the generation of labels for created content
affords the possibility to replace predicates that appear as negative action
pre-conditions with new predicates that exactly complement their use. For
example, if the contrary predicate (ugly ?p-princess) was introduced to the
domain model then this could replace the negative pre-condition (not (beautiful
?p)) in the action become-beautiful. In addition the negative effects of the action
would need to be extended to include (not (ugly ?p)) reflecting the fact that
this property is lost as a result of the transition.
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Algorithm 1 thype: generate alternate types of objects.

1: function thype(t, A)
2: ss← getRelevantSynonyms(t, A)
3: for all s ∈ ss do
4: he← he + getHypernyms(s, HYPERNYM LEVEL)
5: end for
6: for all h ∈ he do
7: ho← ho + getHyponyms(h)
8: end for
9: ho← filterCommonSense(ho, t)

10: return ho
11: end function

12: function filterCommonSense(ho, t)
13: for all h ∈ ho do
14: if isRelatedCN(h, t) ∧ ¬isAntonymCN(h, t)∧
15: ¬isDistinctFromCN(h, t) then
16: ho′ ← ho′ + h
17: end if
18: end for

19: if Length(ho′) > MAX NUM then
20: for all h ∈ ho′ ∧ ¬isACN(h, t) do
21: ho′ ← ho′ − h
22: end for
23: if Length(ho′) < MIN NUM then
24: ho′ ← getTopRelated(ho, MAX NUM)
25: end if
26: end if
27: return ho′

28: end function

6 THYPE: Generating Alternative Types

In this section we overview a second domain model extension operation for
automatically generating plausible additional types of virtual characters and
narrative objects with which to extend an existing narrative planning domain
model. The operation is based on the observation that the natural language
labels used to name planning domain elements can be used to generate re-
lated concepts using lexical relations between the predicate labels and other
terms in online lexical resources. Thus the aim is to identify plausible alter-
native types from online linguistic resources, via traversal of hypernym and
hyponym semantic relations (where hypernyms give a more general semantic
term and hyponyms give a larger set of more specific terms) in combination
with commonsense reasoning to maximize the relevance of the suggested ad-
ditional types. We refer to this as thype, to denote the extraction of types
from hyponyms and hypernyms.

An outline to the generation process is shown in Algorithm 1, with thype
being the main function. Input is some named type of object, t, in the plan-
ning domain model and the set of action names in the current domain model,
A. The first part of the algorithm consists in getting the set of hypernyms for



20 Julie Porteous et al.

type t using online resources (lines 2–5). Our implementation uses WordNet
3.0 (Fellbaum, 1998), although approaches such as Word2Vec (Sahin, 2017)
can also be used to extract resources. We chose WordNet because it is com-
patible with a larger variety of semantic domains, without having to collect
text samples for each single narrative domain. As it does not depend on spe-
cific corpora it can thus cover the multiple application domains we wanted
to test. This contrasts with more recent methods for hypernym or antonym
generation based on Word2Vec (Sahin, 2017).

Since Wordnet can have multiple meanings for a word, we filter the set of
synonyms of the term to reduce the number that are considered and the conse-
quent number of alternate types returned by thype. To do this we look for def-
initions (in the text from WordNet) whose words intersect with action names in
the domain model. This is achieved via the function getRelevantSynonyms
which selects the most likely synonyms (nouns) of t on the basis of intersection
with A, the names of the actions in the current version of the domain model.
This filtering approach is based on semantic cohesion in a manner inspired by
(Morris and Hirst, 1991).

When searching for hypernyms of a given term, it is possible to specify
how many levels of the tree from the term to the summum genus (i.e. the
most generic element of the hierarchy), we retain (HYPERNYM LEVEL in line 4).
This is based on the observation that thype fails to provide relevant sugges-
tions when looking at hypernyms of already generic terms, something that we
measure by the distance between the term and summum genus. In our experi-
ments, we used 3 levels, as this worked best in practice in terms of quality and
performance (in other experiments we observed that increases in level yielded
no significant improvements but degraded performance). As a result, for each
type, we retained 3 terms: the original term and 2 hypernyms.

Once the set of hypernyms is obtained, then a set of candidate alterna-
tive types is collected, ho, by considering each hypernym and extracting its
hyponyms (line 6-8). Finally, the set of hyponyms is filtered using common
sense reasoning (line 9). To do this, we use ConceptNet (Liu and Singh, 2004;
Speer et al., 2017), a common sense knowledge base developed from natural
language units.

Common sense reasoning is performed by the function filterCommon-
Sense. The rationale for the filtering is to place some semantic restrictions
on the alternative characters or narrative objects to be added to the domain
model: thus we are interested in those terms which are related and not those
which are antonyms. The function returns a set ho′, which is a filtered version
of the input set of alternatives ho. The filtering process is based on whether
alternatives from ho are related to type t, according to specific relations pro-
vided by ConceptNet (lines 13–18). First, we only consider alternatives that
are related to t (isRelated returns true if the /relatedness API5 returns a
value greater or equal than 0.2; this value was found to be adequate experi-

5 The /relatedness API is like /related, but instead of ranking the top related terms
to a given query, it returns the relatedness value for a particular pair of terms.
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Fig. 6: Example of thype generation for ranch from original model: 1 use
action labels to filter term meanings; 2 WordNet hierarchies accessed to level
3 to get Hypernyms; 3 get Hyponyms for all selected Hypernyms; 4 Con-
ceptNet lookup is used as part of common sense filtering; 5 relatedness is
used to reject Hyponyms under threshold value of 0.2; 6 example selection
from thype alternatives to extend domain model (see text for further detail).

mentally). Of these, we exclude the terms that are antonyms or distinct (using
the /r/Antonym and /r/DistinctFrom relations respectively).

We are interested in keeping the number of alternatives returned by thype
to a reasonable number, to avoid spurious expansion that would not comply
with the underlying actions and pddl operators. In our experiments we took
this to be 20 (variable MAX NUM). If the number of hyponyms is reasonable,
ho′ ≤ MAX NUM (line 19), no further common sense reasoning is performed and
this set of alternatives, ho′, is returned. Should it happen that ho′ > MAX NUM

(line 19) further processing is performed to bring this within the reasonable
bound. However we wanted to avoid removing too many suggestions at this
stage and hence we introduced an additional variable, MIN NUM, to control the
lower bound of the final set of alternatives. Our implementation used 5 as
the default value of MIN NUM. Then we further filter the set ho′ so it excludes
alternatives that are not considered a subtype of t in ConceptNet (lines 19–
22). For this, we use the relation /r/isA. If the resulting set of alternatives is
too small, we return a subset of the original set ho with the alternatives that
are more related to t (according to ConceptNet’s /relatedness API, lines
23–25).
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6.1 An Example of THYPE in Action

As illustration, consider the application of thype to ranch from our pddl
encoding of a Western domain (Ware, 2014), (Figure 6). Shown is a part of
the original pddl domain model, M, from which types and action labels have
been extracted: input to thype is a type from the domain model and the
action labels. For ranch, getRelevantSynonyms 1 , accesses the WordNet
hierarchies which returns the two meanings shown in the figure. Our cohesion-
based filtering relates the occurrence of “land” in the definition to the labels
of the action sell-land defined in the domain. Hence this meaning is selected
and used to obtain the set of hypernyms he. 2 shows the WordNet tree from
the selected meaning to the summum genus. We use a HYPERNYM LEVEL of 3,
and hence the set of hypernyms includes “farm” and “workplace”.

The next step is to get the associated hyponyms for each hypernym in he
3 . For this example the number of hyponyms before any common sense rea-

soning is 45. This is because the set of hypernyms includes the quite general
term “workplace”, and thus some of the hyponyms include unrelated terms
such as “bakery” and “lab”. Thus common sense reasoning is applied to re-
duce the number of alternatives on the basis of relatedness (via lookup in
ConceptNet 4 and common sense filtering 5 ). It can be seen that after com-
mon sense reasoning, these unrelated terms are eliminated and the number of
alternative types is reduced to 12 in this case, which can then be shown to a
human domain modeller to select which ones to use to extend the domain. It is
important to note that the final set contains alternatives originated by all hy-
pernyms. For example, the final set contains the alternatives “creamery” and
“stud farm”, which are hyponyms of “workplace” and “farm” respectively.

Also illustrated in Figure 6 is selection of thype alternatives to extend
the original pddl domain model, M: in this case stud farm is shown selected
to produce the thype extended domain model, MT (see the next section for
further detail on this process).

7 Framework for Domain Model Extension

In this section we overview a modular and extensible framework that allows the
combination of multiple off-line generated extensions into an original domain
model, M. Consider a library of language extensions, E, as a collection of
functions, e : M 7→ Me, such that the model, M, is extended through some
process into a richer model, denoted Me.

In the next section we detail how an original domain model, M, can be
extended with the addition of extensions such as those generated by the anton
and thype operations overviewed in sections 7.2 and 7.1 respectively. We
consider both individual extensions and combinations of multiple extensions.

We denote the thype and anton extensions of M as MT and MA respec-
tively and use MTA for the use of these extension methods in combination.
Note that because thype adds new types of objects and anton adds new
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Original Model M Extended Model MT

(:types (:types 1
person - object person - object
king - person sovereign - person
...) king emperor - sovereign ...)

(:action order (:action order 2
:parameters :parameters

(?k - king ...) (?k - sovereign ...)

Fig. 7: Aladdin Example, from Riedl and Young (2010), showing addition of
a new type of character, emperor, which has been generated by thype and
selected by an author as an alternative to king: 1 new type emperor is placed
at same level as king and parent type sovereign is added; 2 new parent type
sovereign replaces original type king in all action parameter occurrences.

actions the extension mechanisms are commutative and thus the order of ap-
plication is unimportant. As a consequence MAT is equivalent to MTA.

7.1 MT Domain Extension with thype

thype proposed domain extensions are added to the original domain model
M to create MT as follows:
– For type t in M, the selected alternate types t′ are placed at the same level

of the type hierarchy in MT .
– A new parent type, the hypernym shared by t and members of t′ (from

WordNet), is introduced.
– The new parent type replaces the original type as appropriate in actions,

thus enabling the use of the set of different types.
As illustration, consider the type king in the Aladdin domain with type hi-
erarchy in M as shown in Figure 7. Suppose a domain modeller has selected
emperor as an alternative type of character with which to extend the domain.
This new entity is automatically added to the domain model with the hyper-
nym of king as parent type (i.e., sovereign) with the new type placed as child
type, inheriting properties from the parent. In addition, references to type king
in M are amended in MT to the new parent type, sovereign, with correspond-
ing changes to parameters in all action occurrences (such as the action order
in Figure 7).

7.2 MA Domain Extension with anton

anton extends the set of actions in the domain model with contrary (i.e. op-
posite) actions. It proceeds via construction of sets of state transition rules
representing the partial transitions defined by the domain model. From these
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rules, domain model extensions are constructed via analysis of contrary tran-
sitions. For all transitions in the original model, the expectation is that their
opposite transitions have a natural interpretation in the domain and should
also be in the model. Thus if any are found to be missing they are proposed
as extensions to the model (subject to domain model author approval). The
actions are constructed, as in (Porteous et al., 2015), as follows:

– Name: generated with antonyms from online resources.
– Parameters: the same as those in the action from M which is being ex-

tended and which this action represents the opposite.
– Pre-conditions: are formed from enabling pre-conditions of original action

in M i.e. predicates required to apply the action and unchanged by it; and
post-conditions of the original action in M become pre-conditions.

– Post-conditions: are formed from the post-conditions of the original action
in M. The positive effects of the new action are any predicates deleted by the
original, and the negative effects are those that were gained by the original
action.

Our expectation is that robustness will be further increased when multiple
model extensions are combined. To evaluate this we use thype in combination
with anton.

8 Evaluation

In this paper our focus has been the ability of thype and anton domain
model extensions to increase robustness and diversity. In sections 8.1 to 8.3
below, we present details of evaluation of these aspects.

In earlier work we evaluated the ability of thype and anton to generate
alternatives in the context of a given narrative domain: both in terms of the
number of alternatives proposed along with their plausibility and readability.
We include some discussion of these results in section 8.4 but do not report
them in full. For further detail see Porteous et al. (2015) and (2020).

8.1 Domain Models for Evaluation

For the evaluation we created pddl 2.1 representations of a range of narra-
tive planning domains. These were selected because they had appeared in the
literature, provided a range of narrative contexts and had been modelled inde-
pendently by different narrative authors. These domains are: Aladdin (Riedl
and Young, 2010), Crime Drama (Kartal et al., 2014), Medical Drama (Por-
teous et al., 2015), Red Riding Hood (Riedl, 2009), Western (Ware, 2014)6.

For each of the domains used in the evaluation, extended versions were
created from the original domain model M.

6 Domains available to download from https://porteousjulie.bitbucket.io/
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Domain
Original Model M anton Model MA thype Model MT

#A #T #A #T

Aladdin 12 12 21 18
Crime 9 8 11 12
Medical 10 18 19 20
Red 5 10 9 14
Western 19 10 25 14

Fig. 8: For each domain used in the evaluation, figure shows: number of actions
#A and types of object #T for the Original Domain Model M; the number of
actions in the anton extended domain model, MA; and the number of types
in the thype extended domain model, MT .

– MT : thype extended Domain Model
This model was generated by selecting additional types from those pro-
posed by the system and adding them to the model. The method for se-
lecting extensions was to use those which we assigned a plausibility ranking
of “good”, using the same plausibility ranking adopted in our earlier work
(Porteous et al., 2020), as a proxy for author in the loop content selection
(reflecting the genre dependent nature of these additions and need for
choice from proposed alternatives).
In addition, instances of each new type were added to narrative planning
problem instances: a single instance of each of the new types was added
to the problem instances in the test set. Using a naming convention for
these object instances which adds a digit to the type name. For example,
for the Aladdin domain and the new type fairy an object instance would
be named fairy1 (as shown in Figure 1).

– MA: anton extended domain model
This model was generated for individual comparison with MT . We used our
implementation of anton (Porteous et al., 2015) to generate additional
actions for each of the domains. These actions were then added to M to
create MA.

– MTA: thype and anton extended domain model
This model was generated by adding all of the thype and anton exten-
sions to the original domain model (discussed in the earlier sections) M.
Note that because thype adds new types of objects and anton adds new
actions the extension mechanisms are commutative and thus the order of
application is unimportant. As a consequence MAT is equivalent to MTA.

For each of the domains used in the evaluation, the size of the original domain
model and these extended models, is shown in Figure 8. Listed are the number
of actions #A and types of objects #T for MA and MT .
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(a) ALADDIN: MT , MA outperform
M 100%; MT outperform MA 60%

(b) CRIME: MT , MA outperform M
70%; MA outperform MT 60%

(c) MEDICAL: MT , MA outperform M
100%; MT and MA perform equally

(d) RED RIDING: MT , MA outperform
M 90%; MA outperforms MT 60%

(e) WESTERN: MT , MA outperform M
100%; MT outperforms MA 60%

KEY
M original Domain Model
MT thype Extended Model
MA anton Extended Model
MTA anton & thype Extended Model

Fig. 9: Robustness Results: comparing ability of MT , MA, and MTA to
continue to original goal in execution failure simulation (5 domains, 10 prob-
lems, 100 fail-restarts on each); M included for comparison. (1) Performance
of MT and MA are consistently good across all domains and outperform M
throughout. (2) MTA outperforms all other models and demonstrates the per-
formance gains that can result from combining extensions (see text for detail).

8.2 Robustness of Extended Domain Models

To explore the ability of extended models to support plan generation through
to the original goal in a dynamically changing environment we conducted a
series of simulations with M, MT , MA and MTA. The intention was to simu-
late the execution of an Interactive Narrative System, where user interactions
can change the state of the narrative world leading to execution failure. These
simulated interactions, their frequency and impact on the narrative world,
in terms of precondition failure, were selected at random. The rationale for
random selection of interaction points and frequency was based on the possi-
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bility, in general, that users can interact freely at any stage of a narrative and
as frequently as they choose. The rationale for random precondition failure
was to demonstrate the increased robustness of the domain models in general:
without the need to approximate most likely human-behaviour.

For each run the simulation firstly generated a narrative plan for the input
planning problem (using metric-ff Hoffmann (2003)) and stepped through
each action in the plan. At random points of the simulated execution a random
selection of the current actions preconditions were updated in the current
state of the world so that it could not be applied. At this point of failure, the
simulation tried to regenerate the remainder of the plan from the current state
still using the original goal. Whenever the system was unable to generate a
plan the system reported failure and restarted, otherwise it continued to the
original goal, reported success and restarted. The results of simulation runs,
for 10 problem instances for each of the 5 domains, with 100 simulated failures
and restarts on each problem instance, are shown in Figure 9.

Our expectation was that addition of extensions would increase the robust-
ness of the domain models. In particular we hypothesized that: (i) the thype
and anton extended models, MT and MA, would both be more robust than
M; and (ii) the domain model featuring combined extensions, MAT , would
outperform all other models, with respect to robustness.

To evaluate the robustness of thype extended domain models consider the
results for MT , the thype extended domain model (see Figure 9). Our expec-
tation was that this would improve simulation performance over the original
domain M which is very clearly the case: 100% of the runs for Aladdin, Medical
Drama and Western; 90% for Red Riding Hood; and 70% for Crime Drama.
The instances where thype makes no impact occur when a virtual character
is specified in the goal itself and where state changes negate this e.g. in Crime
Drama and Red Riding Hood when characters are left ¬alive but can’t be
replaced by an alternate type of character.

The results for the anton extended domain model, MA, are also shown in
Figure 9. Here, our expectation was that this would also improve simulation
performance over the original domain M. The results for MT show that it
performs consistently well, yielding similar performance improvements to MA.
There are differences between instances where anton extensions have impact,
in comparison to thype. For example, thype makes no impact when a virtual
character features in the goal and cannot be replaced by an alternative type
of character should state changes leave them ¬alive. In contrast, anton ex-
tensions would include the reverse action to bring a character back to life (see
examples in section 8.4). On the basis of this observation we anticipate that
combination of domain model extensions would yield additional performance
gains via complementary impact from both sets of extensions.

To evaluate the robustness of a combination of domain model extensions
we should consider the results for MTA. On all problem instances across the
domains, where the individual extensions improved performance, this model
outperforms all others (i.e. exceptions are the aforementioned Crime and Red
Riding Hood examples and single instances of Aladdin and Western where an-
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Domain Aladdin Crime Drama Medical Red Riding Hood Western

Diversity MA 80% 70% 80% 40 % 60 %

Fig. 10: Narrative Diversity Results: percentage of instances where diverse
narratives could be generated using MA (these are instances where narratives
could also be generated using the original domain model M).

ton has no impact). This is to be expected as it leverages the robustness gains
from both sets of extensions. For example, consider Aladdin, where narrative
continuation following execution failure can require both anton extensions
such as divorce (to render a character single and able to marry) and thype
generated alternative types of characters such as suitors. We conclude that the
results support our expectations of the robustness of extended domains: for
MT , MAand MTA.

8.3 Diversity of Extended Domain Models

Domain models for use in Interactive Narrative (IN) systems need to allow for
the generation of diverse sets of narratives to allow for system replayability.
The domain model extension operations overviewed in this paper achieve this
through the addition of new narrative actions, anton, and new types of virtual
characters and narrative objects, thype, which open up a wider range of
narrative possibilities. As an example, consider the very different narratives
for the Aladdin domain discussed in section 2 and illustrated in Figure 1.

It is self evident that the extension of domain models to include additional
narrative actions and objects will increase the diversity of narratives that
can be generated. Nevertheless to demonstrate the potential of domain model
extension to support diversity we conducted a series of experiments with the
set of narrative domains described earlier, using the original domain model,
M, and the anton extended model, MA. We hypothesized that, as contrary
transitions generated by anton introduce the possibility of decisions being
changed (e.g. in Aladdin, putting the genie back in the lamp and enabling
another agent to take control), the diversity of narrative generation would be
much higher for MA than for M. We note that the use of distance measures
in this way as part of narrative evaluation is consistent with a growing trend
in narrative research (e.g. Jones and Isbell (2014)).

For the experiments we used the domains introduced earlier, (referred to
as Aladdin, Crime, Medical, Red Riding Hood and Western), and the same set
of random narrative planning instances. These instances were ones for which a
narrative could be generated using the original domain model M and Metric-
ff7. Then for each such instance a narrative was generated using the original
domain model M and a set of diverse narratives were generated with the an-

7 metric-ff: http://fai.cs.uni-saarland.de/hoffmann/metric-ff.html
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Fig. 11: Narrative Diversity Results: ability of MA to generate diverse narra-
tives (5 domains, 10 problems per domain). Plot shows the distance between
narratives generated by the original model, M, and the most diverse MA nar-
rative (expressed as % of the maximum possible, with distance between narra-
tives measured using Levenshtein distance8). Results support our expectation
of increased narrative diversity resulting from domain extension via introduc-
tion of the anton generated contrary transitions. For further detail see text.

ton extended domain MA, adopting the approach of Coman and Muñoz-Avila
(2011). Then the original narrative was compared with the diverse set of nar-
ratives to find the anton narrative that was most different to the original.
For comparison the difference between narratives was measured using Leven-
shtein Distance (Levenshtein, 1966; Jones and Pevzner, 2004) which counts the
edit distance8 between two strings. To obtain suitable strings for comparison,
action names in the narratives were mapped to unique characters.

The results of these experiments are shown in Figure 10 and 11. Figure
10 shows the number of narrative instances for which the anton extended
domain model, MA, was able to generate diverse narratives. We observe that
the diversity is increased consistently across the domains although there are
instances in which no diverse solutions can be generated. This is to be expected
as it depends on the nature of the planning instance: for example, for Aladdin
instances where an alternative narrative is possible using an action to put the
genie back in the lamp, making it possible for another agent to take control,
then this is possible using MA.

8 Levenshtein distance (Levenshtein, 1966) is a count of the minimum edit operations
needed to transform one string to be identical to another. This was selected since it can be
used to measure the distance between different length strings (important for plan compari-
son). The maximum possible distance between 2 strings is the shortest string length.
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Original Content THYPE content Definition Rank

Aladdin

dragon troll a supernatural creature supposed to
live in caves or mountains

G

dragon werewolf a monster able to change appearance
from human to wolf and back

U

Crime Drama

car jeep G
car horseless-carriage P

Fig. 12: Examples of thype generated content and user rankings (G(ood),
P(oor) and U(nsure)). For the type “dragon” (Aladdin), the alternative type,
“troll” was ranked G, whereas the alternative, “werewolf”, was ranked U; for
“car” (Crime Drama) the type “jeep” was ranked G, and “horseless-carriage”
P. These rankings are genre dependent and can differ across domains e.g. a
werewolf is plausible in Harry Potter but not Aladdin. Further detail see text.

The results of the narrative comparisons are plotted in Figure 11: with
difference shown as a percent of the maximum possible between the original
domain narrative and the most different anton domain narrative. The results
clearly demonstrate that the extended domain increases the diversity of nar-
ratives that can be generated. This is an important result since the increased
generativity resulting from use of the anton extended domain did not require
the considerable effort of manual domain creation.

8.4 Plausibility and Readability of Domain Model Extensions

In earlier work we evaluated the ability of the extension operations, thype
and anton, to generate alternatives in the context of a given narrative domain
in terms of their plausibility and readability (see: Porteous et al. (2015) and
(2020)). The conclusion of both evaluations was that the generated domain
content made sense to users, was plausible, and that the semantic labels were
appropriate. We do not report those results here. Rather, we include some
examples to illustrate the types of semantic labels generated by thype and
anton:

– thype: Figure 12 shows some examples generated by thype for the Al-
addin and Crime Drama domains with user rankings of G(ood), P(oor) and
U(nsure). For the Aladdin type of object, “dragon” the thype suggested
alternatives include “troll” and “werewolf”. From their definitions it can
be seen that both share similar characteristics to the original domain type,
such as being magical beings, but are different types of magical beings. The
interesting feature here is whilst they both are plausible, this is very much
genre and story world dependent. For example, a human author might de-
cide that a werewolf makes sense in the world of Harry Potter (Rowling,
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1 ACTIONS 2 PROPERTIES

Original Domain ANTON label Rank Original Domain ANTON label Rank

marry divorce G alive dead G
slay restore U scary bold P

Fig. 13: Examples of anton generated labels (Aladdin Domain) and user rank-
ings (G(ood), P(oor) and U(nsure)). 1 and 2 show action and property
labels from the original domain and anton generated labels. Users ranked
the appropriateness of the generated semantic labels e.g. for the action named
“marry” the opposite action label “divorce” was ranked G; the opposite to
action “slay”, labelled ”restore”, was ranked U; but label “bold”, opposite to
“scary”, was ranked P. See text for further detail and discussion.

1999) but not in the context of Aladdin. For the Crime Drama domain,
the alternatives to “car” include “jeep” and “horseless-carriage”. Given the
setting of a current day crime drama, a horseless carriage could be ranked
as a poor alternative type of object to expand the story world. However,
in some story worlds this is very plausible: consider, for example, the time
travelling story world of Back to the Future (Zemekis, 1985).

– anton Figure 13 shows some examples generated by anton for action la-
bels 1 and property labels 2 from the original narrative domain model,
with user rankings of G(ood), P(oor) and U(nsure). Recall that the anton
semantic labels are for content representing opposite actions and proper-
ties. For the action “marry” the label for its opposite, namely “divorce”, is
clearly a good suggestion (ranked G). In contrast the label for the opposite
to “slay” is not so obvious, which is reflected in the U ranking. This is to
be expected for those actions, such as slay, where no obvious opposite label
exists. It may also be that the somewhat archaic vocabulary contributes in
this case. Note that the rankings given here apply to the appropriateness of
the semantic labels themselves and not the action transition. For example,
whether or not a character that has been slayed can be brought back to
life is something that is genre dependent: it makes sense in Aladdin but
not in other contexts.
For the property labels, alive and scary, the examples illustrate similar is-
sues. For “alive” there is an obvious label for the opposite property, namely
“dead”, as reflected with the G ranking. This is not the same for the prop-
erty “scary”, and it is not surprising that the anton suggested label for
the opposing property is poor.

9 Conclusion

Narrative Planning differs from traditional planning problems in a number
of ways. In view of the main applications of narrative planning, which are
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interactive narrative and narrative generation, plan diversity outweighs plan
optimality in terms of length or use of resources. While narrative planning and
traditional planning both share a requirement for robustness, the causes for
failure tend to be more varied in narrative planning, hence more difficult to
capture. Nowhere is this specificity more acute than when defining planning
domains: narrative generation assumes a diversity of operators which remains
consistent within a family of planning domains and continuing or repairing a
narrative plan in front of failure again requires various yet consistent operators.

In this work, we have addressed this problem by proposing to extend nar-
rative planning domains semi-automatically from a default baseline domain,
using principled mechanisms of two types. The first one captures the logical
consequences of operator failure to define contrary operators able to resume
the course of planning by undoing the actions’ consequences, rather than sim-
ply reversing them. The second one uses an ontological approach to diversify
potential actions through the exploration of a conceptual hierarchy. In both
cases, an additional requirement for the generated operators is to be human-
readable: this can be achieved by associated appropriate linguistic resources to
the above operations, so that both the operators’ action names and individual
predicates convey the essence of the new operator to a human operator having
produced the default planning domain.

We have presented experiments applying these methods to various nar-
rative planning domains available from the literature. Our results show how
domains extended using anton and thype are more robust and diverse: with
robustness measured in terms of the likelihood of continuation, in the event
of plan execution failure, to the original goal across a range of domains; and
diversity measured by the ability to generate different narratives. The results
also show that combining different extension mechanisms, such as anton and
thype, results in greater increases in domain robustness and diversity.

One direct application of our method would be to facilitate the authoring
of more complex narrative planning domains, which has proven a bottleneck in
the scalability of narrative generation systems. Despite the very encouraging
results obtained by our approach through relatively simple methods, it still
faces a number of limitations, and could take advantage from recent advances
in language models. For instance, a better integration could be achieved be-
tween the two methods, through the use of more specific common sense models
and a finer distinction between these models and linguistic resources. Con-
sidering the generation of human-readable labels, it could benefit from new
resources that allow the addition of more specific embeddings, the latter be-
ing trained on text corpora pertaining to the target narrative genre for the
planning domain.
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