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Abstract. This paper shows by examples how the Theory of Program-
ming can be taught to first-year CS undergraduates. The only prereq-
uisite is their High School acquaintance with algebra, geometry, and
propositional calculus. The main purpose of teaching the subject is to
support practical programming assignments and projects throughout the
degree course. The aims would be to increase the student’s enjoyment of
programming, reduce the workload, and increase the prospect of success.
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1 Introduction

The Theory of Programming lies at the foundation of modern development envi-
ronments for software, now widely used in industry. Computer Science graduates
who understand the rationale of programming tools, and who have experience
of their use, are urgently needed in industry to maintain the current rate of
innovations and improvements in software products installed worldwide.

We put forward the following theses:

1. The fundamental ideas of the Theory of Programming were originally formu-
lated by great philosophers, mathematicians, geometers and logicians, dating
back to antiquity.

2. These ideas can be taught as an aid to practical programming throughout
a degree course in Computer Science. The desirable initial level of Math for
first-year CS students is that of High School courses in Algebra, Geometry
and Propositional Logic.

3. The ideas should form the basis of a student-oriented Integrated Develop-
ment Environment (IDE), needed to support students in understanding re-
quirements, in designing solutions, in coding programs, in testing them, and
in diagnosing and debugging their errors.

One of the goals of this paper is to contribute to the challenge posed by
Carroll Morgan in [21]:
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Invariants, assertions and static reasoning should be as self-evidently part
of the introductory Computer Science curriculum as are types, variables,
control structures and I/O in the students’ very first programming lan-
guage.
Can you help to bring that about?

Paper structure. In this paper we provide examples of material that can be
taught to first-year CS undergraduates. In Section 2, we introduce the under-
lying concepts of algebra and logic. These are then applied to the execution
of computer programs: in Section 3 we discuss the familiar topic of sequential
composition and in Section 4 we move on to concurrent composition. Section
4 includes material suitable for a more advanced and elective course in formal
methods delivered at later stage in the syllabus, where we show how two famil-
iar and widely used theories of programming can be unified. After presenting
in Section 5 some related work, we conclude in Section 6, where we also briefly
suggest directions for future work.

2 Algebra and Logic

This section introduces the underlying concepts of algebra and logic. The first
subsection is entirely elementary, but it proves some essential theorems that will
be used in later sections. The second subsection shows how familiar logical proof
rules can be derived from the algebra. The third subsection introduces spatial
and temporal reasoning about the execution of computer programs.

2.1 Boolean Algebra

George Boole
(1815–1864)

Boolean Algebra, which is widely taught at the beginning
of degree courses in Mathematics and in Philosophy, is
doubly relevant in a Computer Science course, both for
Hardware Design and for Program Development.

Boolean Algebra is named for the nineteenth cen-
tury mathematician George Boole (1815–1864). His father
was a shoe-maker in Lincoln, where he attended primary
school. His father died when he was aged 16, and he be-
came the family breadwinner, working as a schoolmas-
ter. At age 25 he was running a boarding school in Lin-
coln, where he was recognised as a local civic dignitary.
He learnt mathematics from books lent to him by friendly
mathematicians. At the age of 34, he was appointed as first
Professor of Mathematics at the newly founded Queen’s
College in Cork. He published a number of articles in the humanities, and wrote
several mathematical textbooks. But he is now best known for his logical inves-
tigations of the Laws of Thought [6], which he published in 1854 and where he
proposed the binary algebraic operators not, and, or, and a binary comparison
for predicates as the foundation for a deductive logic of propositions.
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Disjunction. Disjunction is denoted as ∨ (read as ‘or’) and satisfies three
axioms: it is associative, commutative, and idempotent. All three axioms are
illustrated in the following proof.

Theorem 1. Disjunction distributes through itself:

(p ∨ q) ∨ r = (p ∨ r) ∨ (q ∨ r)

Proof.
RHS = p ∨ (r ∨ (q ∨ r)) by associativity

= p ∨ ((q ∨ r) ∨ r) by commutativity
= p ∨ (q ∨ (r ∨ r)) by associativity
= p ∨ (q ∨ r) by idempotence
= LHS by associativity

Corollary 1. Rightward distribution (follows by commutativity).

Geometry. Geometry is recognised in Mathematics as an excellent way of gain-
ing intuition about the meaning and the validity of algebraic axioms, proofs,
conjectures, and theorems. The relevant geometric diagrams for Boolean alge-
bra are familiar as Venn diagrams. For example, Fig. 1a illustrates the Venn
diagram for disjunction.

p q

p ∨ q

(a) Disjunction: p or q

r

p

p ≤ r

(b) Comparison: r is weaker than p

Fig. 1: Venn diagrams for disjunction and comparison.

Comparison (denoted as ≤). The most important comparison operator be-
tween terms of Boolean algebra is implication. It is written here as a simple
less-than-or-equal sign (≤). It is defined simply in terms of disjunction:

p ≤ r is defined as r = p ∨ r
The comparison may be read in many ways: that p implies r, or that p is

stronger than r, or that r is weaker than p. The definition is illustrated by a
Venn diagram showing containment of the stronger left side p by the weaker
right side r (see Fig. 1b).
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Disjunction is a weakening operator. An operator is defined as weakening
if its result is always weaker than both of its operands. From Theorem 2 and
Corollary 2 below, we conclude that the result of disjunction is always weaker
than both of its operands. The proof of this again uses all three axioms.

Theorem 2. p ≤ p ∨ r

Proof.
p ∨ r = (p ∨ p) ∨ r by idempotence

= p ∨ (p ∨ r) by associativity

The theorem follows by definition of ≤.

Corollary 2. p ≤ r ∨ p (by commutativity)

Henceforth, we omit brackets around associative operators and proofs of the-
orems that follow by commutativity.

2.2 Deductive Logic

The axioms of algebra are restricted to single equations or comparisons between
two algebraic terms. This makes algebraic reasoning quite simple, using only
substitution of equals to deduce a new equation from two equations that have
already been proved. The price of this simplicity is that proofs can get too long
for comfort, and they can be quite difficult to find. To tackle these problems we
need more powerful techniques, which are expressed as rules of logical deduction.

The Aristotelian Syllogism. A syllogism is a form of proof rule that has been
taught for over two thousand years. It consists of two antecedents written above
a line and one consequent written below the line. This says that any proof that
contains both the antecedents can validly be extended by adding the consequent
as its next line. A well-known example of a syllogism is:

All men are animals All animals are mortal
All men are mortal

Aristotle
(384–322 BC)

The use of syllogisms as a tool for reasoning can be dated
back to the work of the ancient Greek philosopher Aristo-
tle [32], who made a remarkable contribution to the his-
tory of human thought. He was the founder, director and
a lecturer at a private academic institution in Athens. His
lecture notes still survive. They deal with both the sciences
and the humanities, and spanned almost the full range of
human intellectual endeavour for the next two thousand
years. The first application of syllogisms was probably in
Biology, of which he is also recognised as the founding fa-
ther. They are well adapted to deducing the consequences
of his biological classifications.

A proof rule in algebra rather than biology is given in
the following theorem.
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Theorem 3 (Proof by cases).

p ≤ r q ≤ r
(p ∨ q) ≤ r

Proof. Assuming the antecedents r = p∨r and r = q∨r, we prove the consequent:

r = r ∨ r by idempotence
= (p ∨ r) ∨ (q ∨ r) by substitution for each r
= (p ∨ q) ∨ r by Theorem 1

The conclusion follows by definition of ≤.

In this proof, the assumption of the antecedents of the rule is justified by the
general embargo which forbids use of the rule until the antecedents have already
been proved.

A validated proof rule can also be used backwards to suggest a structure
and strategy for a proof of a desired conjecture which matches the conclusion of
the rule. Then the task of proof can be split into subtasks, one for each of the
antecedents. Success of this strategy requires that each antecedent is in some
way simpler than the conclusion. For example in the rule for proof by cases, the
conclusion has a disjunction p ∨ q where the antecedents only contain a single
operand, either p or q. The backward use is widely adopted in the search for
proofs by computer.

Partial orders. The well-known properties of an ordering in mathematics are
usually defined by means of proof rules. The rules shown in the proof of Theo-
rem 4 define the concept of a partial order. Each rule is proved by only one of
the three axioms of disjunction. The first line shows how an axiom itself can be
written as the consequent of a proof rule with no antecedents.

Theorem 4. Comparison (≤) is a partial order.

Proof. Comparison is:

reflexive: p ≤ p (by idempotence)

transitive:
p ≤ q q ≤ r

p ≤ r (by associativity)

antisymmetric:
p ≤ q q ≤ p

p = q (by commutativity)

Covariance (monotonicity) of disjunction. Covariance is the property
of an operator that if either of its operands is strengthened, its result is also
strengthened (or stays the same). Such an operator is said to respect the order-
ing of its operands. Covariance justifies the use of the comparison operator ≤ for
substitution of one formula in another, just like the familiar rule of substitution
of equals.
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Theorem 5. Disjunction is covariant (monotonic) with respect to ≤, that is:

p ≤ q
p ∨ r ≤ q ∨ r

Proof. From the antecedent, transitivity of ≤, and weakening of disjunction, we
have:

p ≤ q ≤ q ∨ r and r ≤ q ∨ r

The consequent follows by the proof rule by cases.

Covariance is also a formal statement of a common principle of engineering
reasoning. Suppose you replace a component in a product by one that has the
same behaviour, but is claimed to be more reliable. The principle says that the
product as a whole will be made more reliable by the replacement; or at least
it will remain equally reliable. If the product is found in use to be less reliable
than it was before the replacement, then the claimed extra reliability of the
component is disproved.

2.3 Spatio-Temporal Logic

A theorem of Boolean algebra is used to state an universal truth, which remains
true everywhere and forever. The ideas of temporal logic were explored by Aris-
totle and his successors, for reasoning about what may be true only during a
certain interval of time (its duration), and in a certain area of space (its extent).
A proposition describes all significant events occurring within its given duration
and within its given extent. However, the logic does not allow any mention of a
numeric measurement of the instant time or the point in space at which an event
occurs. Thus a proposition in the logic can be true of many different regions of
space and time.

William of Occam
(1287-1347)

Temporal logic was widely explored by philosophers
and theologians in the middle ages. William of Occam
(1287–1347), a Franciscan friar studying philosophy at
Oxford, is considered to be one of the major figures of
medieval thought. Unfortunately he got involved in church
politics. He antagonised the pope in Rome, and was ex-
communicated from the Church in 1328. This was be-
lieved to condemn him to an eternity in hell. Fortunately,
he was reprieved thirty years later. Occam’s book on
Logic, Summa Logicae (1323) included familiar operators
of Boolean Algebra, augmented by operators that apply
to propositions of spatial and temporal logic [25]. They in-
clude sequential composition p then q, written here with
semicolon (p; q), and p while q, written here with a single vertical bar (p | q).
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Geometric Diagrams. The propositions of Occam’s spatio-temporal logic are
best illustrated by two-dimensional geometric diagrams, with one axis repre-
senting time and the other representing space. As shown in Fig. 2a, the region
described by a proposition p is represented by a rectangular box with the name
p written in the top left corner. The box contains a finite set of discrete points,
representing all the events that occurred in the region. The horizontal edges
of the box represent the interval of time within which those events occur. The
vertical edges represent the locations in space where the events occur. Fig. 2b
illustrates these two dimensions.

In Cartesian plane geometry, each point lies at the intersection of a vertical
coordinate, shown here in gray, and a horizontal coordinate shown as a black
arrow (Fig. 2b). Each point can therefore be identified by a pairing of a horizontal
coordinate with a vertical coordinate. But the geometry shown here differs from
this in that not all coordinate positions are occupied by a point. This is because
in the description of the real world many or most coordinates are occupied by no
event. Our diagrams are comparable to the output of a multiple pen recorder,
for example the seismograms of geology and the cardiograms. Each horizontal
line is the output of a single pen recording the value given by sensors in different
locations. The events record significant changes in the value of the sensor.

In computer applications, the horizontal lines stand uniquely for a variable
held in the memory of the computer. The events on a line represent assignments
of potentially new values to the variables. The vertical lines are often drawn
in later to explain a group of significant changes made simultaneously in many
variables.

The sequential composition of p and q, denoted as p;q, starts with the start
of p and ends with the end of q. Furthermore, q starts only when p ends. Fig. 3a
shows a diagram of the sequential composition of p and q. As before, the box is
named by the term written in the top left corner. Every event in the composition
is inside exactly one of the two operands. The vertical line between p and q is
shared by both of them. It shows that time intervals of the two operands are
immediately adjacent in time. The interval for the result is the set union of the
interval for p and the interval for q .

interval in time

ex
te

nt
 in

 s
pa

ce p

(a) Region describing p, with points
representing events.

interval in time
events

locations

instants

(b) Events occur within an interval in a
given location in space.

Fig. 2: Propositions as two-dimensional geometric diagrams.
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time
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p;q

p

q

(a) Sequential composition.

time

sp
ac
e

p|q

p

q

(b) Concurrent composition.

Fig. 3: Spatio-temporal diagrams for sequential composition and concurrent com-
position.

The boxes with dotted edges at the corners of the p; q contain no events. They
are padding, needed to draw the result of composition as a box. To represent
this padding we introduce an algebraic constant

e
, read as ‘skip’.

The concurrent composition of p and q, denoted as p | q and read as p while q ,
starts with the start of both p and q and ends with the end of both of them.
Its duration is the maximum of their durations. Fig. 3b shows a diagram of the
concurrent composition of p and q. Its extent in space is the disjoint union of
the extents of the operands. This means that no location can be shared by the
concurrent components This embargo is the characteristic of O’Hearn’s separa-
tion logic [23, 24, 30], which protects against the well-known problem of races
in concurrent programs.

3 Sequential Composition

The algebraic axioms for sequential composition are:

– Sequential composition is associative and has the unit
e

– Sequential composition distributes through disjunction (both leftward and
rightward):

p; (q ∨ q′) = p; q ∨ p; q′ and (q ∨ q′); p = q; p ∨ q′; p

Distribution justifies giving sequential composition a stronger precedence than
disjunction. The associativity of sequential composition is evident from its dia-
gram, and so is the unit law.

We now show how the algebraic axioms can be used to prove some rules.

Theorem 6 (Proof rule for sequential composition).

p; q ≤ m m; r ≤ t
p; q; r ≤ t
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Proof. Assuming the antecedents (1) m = p; q ∨m and (2) t = m ; r ∨ t, we
prove the consequent:

t = (p; q ∨m) ; r ∨ t substitute (1) in (2)

t = p; q; r ∨ (m; r ∨ t) ; distributes through ∨
t = p; q; r ∨ t substitute back by (2)

This proof rule is used for decomposing its consequent into two parts, each
of which has only three operands instead of four. Each antecedent is in this way
simpler than the consequent, whose proof can therefore be constructed by divide
and conquer.

Rules of Consequence. The following corollaries are a consequence of Theo-
rem 6.

Corollary 3.

p ≤ m m; r ≤ t
p; r ≤ t

Corollary 4.

p; q ≤ m m ≤ t
p; q ≤ t

Proof. Corollary 3: by substitution of q by
e

. Corollary 4: by substitution of r
by

e
.

3.1 Hoare Triples

Consider the proposition p; q ≤ r. It means that if p describes the interval from
the start of r to the start of q, and q describes the interval from the end of p to
the end of r, then r correctly describes the whole of p; q. This is the intended
meaning of the Hoare triple [14]. Therefore, we define:

{p} q {r} def
= p; q ≤ r

This definition allows p and r to be arbitrary programs — a generalisation
of the original formulation of Hoare logic, in which p and r are required to be
assertions.

3.2 Verification Rules for Sequential Composition

By substitution of the definition of triple into the proof rule for sequential com-
position (Theorem 6), we obtain the Hoare rule for sequential composition:

{p} q {m} {m} r {t}
{p} q ; r {t}

From Corollaries 3 and 4, we obtain the Hoare Rules of Consequence:

p ≤ m {m} r {t}
{p} r {t}

{p} q {m} m ≤ t
{p} q {t}
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3.3 Milner Transition

Robin Milner defined CCS [19], a theory of programming which is now widely
used in specifying how an implementation should generate a single execution

of a given program r. The Milner transition defined here, and denoted r
p−→ q,

states that r can be executed by executing p first, saving q as a continuation for
subsequent execution. (Other executions may begin with an initial step different
from p). But this is exactly the meaning of the same comparison that we used
to define the Hoare triple. We thus define:

r
p−→ q

def
= p; q ≤ r

Thus the two calculi are identical, and all theorems of one can be translated
letter by letter from the corresponding theorem of the other. For example, in
Milner’s notation the rule for sequential composition and its corollaries are

r
p−→ m m

q−→ t

r
p;q−−→ t

m ≤ r m
q−→ t

r
q−→ t

r
p−→ m t ≤ m

r
p−→ t

These corollaries play the role of the structural equivalence, which Milner
introduced into the definition of concurrent programming languages (with ≡
replaced by ≤) [20].

4 Concurrent Composition

Concurrent composition has the same laws as sequential composition. An addi-
tional interchange axiom permits a concurrent program to be executed sequen-
tially by interleaving. The algebraic axioms are:

– Concurrent composition is associative and has unit
e

– Concurrent composition distributes through disjunction

– Interchange axiom: (p | q); (p′ | q′) ≤ (p; p′) | (q; q′)

We omit the commonly cited commutativity law for concurrency since it can be
introduced later, whenever needed. The interchange law gets its name because it
interchanges operators and variables when passing from one side of the compar-
ison to the other. Note how the RHS and LHS differ by interchange of operators
(; interchanged with |) and of operands (p′ with q).
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4.1 Interchange

The two following elementary corollaries of interchange show that a concurrent
composition can be strengthened by sequential execution of its operands in either
order:

p; q′ ≤ p | q′ by interchange with p′ = q =
e

q; p′ ≤ p′ | q similarly, with q′ = p =
e

From these two properties and the proof rule by cases, we obtain:

p; q ∨ q; p ≤ p | q

This means that concurrent composition is weaker than the disjunction of these
alternative orderings. We will now show by example that the interchange law
generalises this interleaving to operands containing any number of operators.

We start with what are known as small interchange laws.

Theorem 7 (Small interchange laws).

p; (p′ | q′) ≤ (p; p′) | q′ q =
e

q; (p′ | q′) ≤ p′ | (q; q′) p =
e

(p | q); q′ ≤ p | (q; q′) p′ =
e

(p | q); p′ ≤ (p; p′) | q q′ =
e

Proof. All four are proved from the interchange axiom, by substitution of
e

for
a different variable.

The above six corollaries are called frame laws in separation logic. They
adapt the interchange law to cases with just two or three operands. Successive
application of the frame laws can strengthen any term with two or three operands
to a form not containing any concurrency. The following is an example derivation:

p; q; q′ ≤ (p | q); q′ ≤ p | (q; q′)

4.2 Basic Principle of Concurrent Programming

We now show how to interleave longer strings. Let x,y,z,w,a,b,c,d be characters
representing single events. Let us omit “;” in strings except for emphasis. Thus:

xyzw = x; y; z;w

The interchange law itself extends this principle to arbitrary terms, with many
concurrent compositions, as the following example shows:

abcd | xyzw is the RHS of interchange

≥ ( a; bcd ) | (xy; zw) associativity (twice)

≥ ( a | xy); ( bcd | zw) interchange

≥ ( a | x; y); ( b; cd | zw) associativity (twice)

≥ ( a | x); y; ( b | zw); cd frame laws (twice)

≥ x a yz b w cd similarly
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In the first line of this derivation, the characters of the left operand of con-
currency have been highlighted; and the same characters are highlighted in sub-
sequent lines. This conveys the important intuition that the order of characters
in each sequential substring is preserved throughout. The same applies to the
original right operand. Furthermore, each line splits some of the substrings of
the previous line into two substrings. When all the highlighted substrings are of
length 1, the first corollary can eliminate the concurrency. This shows that any
chain of calculation using the interchange law must terminate.

A basic principle of concurrent programming states that every concurrent
program can be simulated by a sequential program. Without this principle, it
would have been impossible to exploit concurrency in general-purpose libraries
and class declarations. The principle was proved for Turing machines by the
design of a normal sequential Turing machine that could interpret any program
run by multiple machines [27]. Our result is that any concurrent program can
be translated by algebraic transformations for execution by a purely sequential
machine. A direct algebraic proof is much simpler than a proof by interpretation.
The result is also more useful because it can be applied to arbitrary sub-terms
of a term. Thus the explosive increase in length of most reductions to normal
form can generally be avoided.

4.3 Unifying Theories of Concurrency

The basic concurrency rule of separation logic was formulated by Peter O’Hearn
in Hoare Logic. When translated to our algebraic notation it gives the following
proof rule.

Interchange Rule (O’Hearn).

p; q ≤ r p′; q′ ≤ r′

(p | p′); (q | q′) ≤ (r | r′)
His frame rule similarly translates to one of the frame laws of Theorem 7.
Just as the sequential rule is derived from the sequential axioms in section 3,

the Interchange Rule is derivable from the Interchange Axiom.

Theorem 8. The Interchange Axiom implies the Interchange Rule.

Proof. Assume the antecedents of the interchange rule:

p; q ≤ r and p′; q′ ≤ r′

(p | p′); (q | q′) ≤ (p; q) | (p′; q′) Covariance of | twice:

(p; q) | (p′; q′) ≤ (r | r′)
and transitivity of ≤

(p | p′); (q | q′) ≤ (r | r′)

Conclusion:
p; q ≤ r p′; q′ ≤ r′

(p | p′); (q | q′) ≤ (r | r′)
the interchange rule
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Surprisingly, the implication also holds in the reverse direction.

Theorem 9. The Interchange Rule implies the Interchange Axiom.

Proof. We start by assuming the interchange rule. Since it is a general rule, we
can replace consistently all occurrences of each of its variables by anything we
like.

p; q ≤ r p′; q′ ≤ r′

(p | p′); (q | q′) ≤ (r | r′) replace r by p; q

and r′ by p′; q′

p; q ≤ p; q p′; q′ ≤ p′; q′

(p | p′); (q | q′) ≤ (p; q | p′; q′) both antecedents are true
by reflexivity of ≤

Conclusion: (p | p′); (q | q′) ≤ (p; q) | (p′; q′) the interchange axiom

Summary. We have extended to concurrency the unification between Hoare
Triples and Milner Transitions that was achieved for sequentiality in section 3.

Theorem 10. The following three rules are logically equivalent.

p; q ≤ r p′; q′ ≤ r′

(p | p′); (q | q′) ≤ (r | r′) The Interchange Rule

{p} q {r} {p′} q′ {r′}
{(p | p′)} q | q′ {(r | r′)} Translated to Hoare Triples

r
p−→ q r′

p′

−→ q′

(r | r′) (p|p′)−−−→ (q | q′)
Translated to Milner transitions

The third rule is just the rule for concurrency in Milner’s CCS, as formulated
in the so-called ‘big-step’ version of operational semantics. It is interpreted as
stating:

To execute a concurrent composition of two sequential operands, split
each operand into two sequential parts. Then start by executing the
first part of both operands concurrently, and conclude by executing the
second parts.

The unification of two widely accepted theories of programming is presented
as strong evidence that our algebraic axioms are actually applicable to familiar
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programming languages implemented on computers of the present day. Many
interpreters and compilers for programming languages are specified by an oper-
ational semantics expressed as Milner Transitions. Most program analysers and
proof tools for sequential languages follow a verification semantics expressed as
Hoare Triples. Many papers in the Theory of Programming prove the consis-
tency between these two ‘rival’ theories for particular languages. Algebra unifies
the theories, by proofs which could be understood or even discovered (under
guidance) by CS students in their practical programming courses.

5 Related Work

This section surveys evidence for the validity of the three theses listed in the
Introduction.

1. The biographies in this paper of Aristotle, Boole, and Occam are only a
small selection of those who have contributed to the basic ideas of Computer
Science, long before computers were available to put them into practice.
Further examples are Euclid and Descartes for Geometry, Al-Khawarismi
and Leibniz for Algebra, and Russel and Gödel for Logic. Their biographies
may be found in Wikipedia. More recent pioneers are treated in [8].

2. Considerable experience has been accumulated of the effectiveness of teach-
ing the Theory of Programming as part of practical degree courses in Com-
puter Science. For example, in [29], the authors show how teaching concur-
rency and verification together can reinforce each other and enable deeper
understanding and application. They suggest that concurrency should be
taught as early as possible and they introduce a new workflow methodol-
ogy that is based on existing concurrency models (CSP, π-calculus), on the
model checker FDR that generates counter-example traces that show causes
of errors, and on programming languages/libraries (occam-π, Go, JCSP, Pro-
cessJ) that allow executable systems within these models.
Another interesting example is the experimental course in “(In-)Formal Meth-
ods” [21], where invariants, assertions, and static reasoning are introduced.
The author argues that the ideal place for an informal-methods course is the
second half of first year, because at that point students already understand
that “programming is easy, but programming correctly is very hard”.
Further proposals to introduce invariants and assertions as part of the in-
troductory Computer Science curriculum, even at pre-university level, are
presented in [10] and [11]. In [10], a programme focused on algorithmic prob-
lem solving and calculational reasoning is proposed. In [11], an experiment
is presented where students specify algorithmic problems in Alloy [17] and
reason about problems in an algebraic and calculational way. It has been
argued that students seem to prefer and understand better calculational
proofs [9]. Calculational proofs are commonly used in the functional pro-
gramming community to demonstrate algorithm correctness [4, 16]. Recent
tool support shows that this style can have impact in practical functional
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programming [33]. An application of relational calculation to software ver-
ification is presented in [26], illustrated with a case study on developing a
reliable FLASH filesystem for in-flight software. It combines the pragmatism
of Alloy [17] with the Algebra of Programming presented in [5].

3. The introduction of formal methods in practical programming has acceler-
ated in recent years. Regarding practical verification, there have been several
attempts at building languages and systems that support verification, pro-
viding the ability to specify preconditions, postconditions, assertions, and
invariants. ESC/Java [12] and Spec# [3] build on existing languages, Java
and C#, respectively. Dafny [18] is a programming language with built-in
specification constructs. The Dafny static program verifier can be used to ver-
ify the functional correctness of programs. Dafny has been extensively used
in teaching. Whiley [28] is a programming language designed from scratch in
conjunction with a verifying compiler. SOCOS [2] is a programming environ-
ment that applies Invariant Based Programming [1], a visual and practical
program construction and verification methodology. The Java+ITP [31] was
used as a teaching tool at the University of Illinois at Urbana-Champaign
to teach graduate students and seniors the essential ideas of algebraic se-
mantics and Hoare logic. A recent case of success in industry is Infer6 [7], a
static analyzer based on separation logic [30] adopted and being developed
by Facebook. Infer has been used in a 4th-year MEng and MSc course on
separation logic at the Department of Computing, Imperial College London7.

6 Conclusion

We hope that this article has contributed to the challenge posed by Carroll
Morgan that we mentioned in the Introduction. We also hope to have made
the case that current achievements in teaching sequential programming can be
extended to concurrent programming.

The theory has been further extended to object oriented programming in [15].
These extensions will require new textbooks and extension and combination of
existing tools. The creation of an environment that effectively combines the expe-
rience and tools already available is an open challenge. Ideally, the environment
should allow students to work at different levels of abstraction and should unify
interfaces and techniques from existing tools, such as Alloy Analyzer [17] and Is-
abelle/UTP [13]. Since this environment is to be used in a teaching environment,
we do not have the problem of scale; however, feedback must be given quickly to
students (and preferably in a graphical form). The approach described in [29] is
an excellent example of how a model-checker for concurrency can be integrated
with a testing tool. We believe it would be fruitful if tool-builders and users
adopted a similar approach, integrating their tools and ideas into this system
and other rival verification platforms. Tools such as the theorem prover Lean [22]
seem to provide a promising basis for further developments.

6 Infer static analyzer website: https://fbinfer.com
7 Course link: https://vtss.doc.ic.ac.uk/teaching/InferLab.html

https://fbinfer.com
https://vtss.doc.ic.ac.uk/teaching/InferLab.html
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