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Abstract. Despite great advances in computer-assisted proof systems,
writing formal proofs using a traditional computer is still challenging due
to mouse-and-keyboard interaction. This leads to scientists often resort-
ing to pen and paper to write their proofs. However, when handwriting
a proof, there is no formal guarantee that the proof is correct. In this
paper we address this issue and present the initial steps towards a sys-
tem that allows users to handwrite proofs using a pen-based device and
that communicates with an external theorem prover to support the users
throughout the proof writing process. We focus on calculational proofs,
whereby a theorem is proved by a chain of formulae, each transformed
in some way into the next. We present the implementation of a proof-
of-concept prototype that can formally verify handwritten calculational
proofs without the need to learn the specific syntax of theorem provers.

Keywords: handwritten mathematics; interactive theorem proving; mathemat-
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1 Introduction

Mathematical proof is at the core of many scientific disciplines, but the develop-
ment of correct mathematical proofs is still a challenging activity. In recent years,
there have been great advances in computer-assisted proof systems that support
the development of formally verified proofs (e.g. Isabelle/HOL [25] and Coq [8]).
However, writing proofs using a traditional computer poses difficulties due to
mouse-and-keyboard interaction. That is why scientists often resort to pen and
paper to support them in their thinking process and to record their proofs. The
problem is that when handwriting a proof, there is no formal guarantee that the
proof is correct.

To formally verify a handwritten proof, one has to translate it into a theorem
prover’s language. This process takes considerable time and effort and requires
a good knowledge of the theorem prover’s syntax. This makes the writing of
verified proofs feel unnatural and difficult, further encouraging scientists to use
the pen and paper approach.
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To the best of our knowledge, the problem of formally verifying handwrit-
ten proofs is still open. In this paper, we present a proof-of-concept research
prototype that attempts to bridge the gap between the natural mathematical
practice of handwriting proofs and their mechanical verification. This is the
first step towards a system for pen-based devices that allows users to handwrite
proofs and that communicates with an external theorem prover to support the
users throughout the proof writing process. We focus on calculational proofs [3],
whereby a theorem is proved by a chain of formulae, each transformed in some
way into the next. We used the method of rapid prototyping [29] to demonstrate
the feasibility of the system. Since innovations communicated verbally can be
difficult to imagine, a prototype can give the prospective users a better sense of
what can be achieved as well as giving us proof that our goal is attainable.

In the next sections, we present some background and related work (§2),
summarise requirements taken from existing literature (§3), present a proof-of-
concept prototype (§4), and conclude by discussing the next steps (§5).

2 Background and Related Work

This work is being developed in the context of teaching and research on correct-
by-construction program design. Starting with the pioneering work of Dijkstra
and Gries [9,14], a calculational method emerged, emphasising the use of sys-
tematic mathematical calculation in the design of algorithms. Proofs written in
the calculational format consist of a chain of formulae, each transformed in some
way into the next, with each step optionally accompanied by a hint justifying
the validity of that step (see Figure 1(c) for an example).

Calculational proofs are known for their readability and for helping to avoid
mistakes, but errors can still occur. Indeed, the need for mechanical verification of
calculational proofs has been widely recognised. For example, in [22], the authors
point out errors in some of Dijkstra’s calculations and send a clear message to
the calculational community: “If your proofs are so rigorous and so amenable to
mechanization, stop just saying so and do it”. However, they question how hard
it would be to learn and use a proof checker and whether transforming proofs
for mechanical checking would make them ugly and hard to understand.

Some work has been done towards mechanised calculational proofs. For ex-
ample, Leino and Polikarpova [20] extended Dafny [19] to support proof cal-
culations. The authors state that “It would be wonderful if we could just take
a pen-and-paper calculational proof and get it machine-checked completely au-
tomatically”, further supporting the need for verified handwritten proofs. Also,
Tesson et al. [28] design and implement a set of tactics for the Coq proof assistant
to help writing proofs in calculational form.

With the advent of pen-input devices the possibilities to improve on the in-
teraction limitations of traditional computers are enormous, in particular when
it comes to mathematical input. These devices enable software tools such as
MathBrush [18] and Microsoft’s ink math assistant [26], which allow the recog-
nition, evaluation, and manipulation of handwritten mathematical input (for an
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extended list of pen-based mathematical tools, see [23,24]). Our work differs from
these tools on the emphasis and domain of application: while these emphasise
the recognition and evaluation of expressions, our focus is on supporting the
handwriting, manipulation, and verification of calculational proofs. As far as we
know, there is only one system that supports the manipulation of handwritten
calculational proofs using pen-based devices: the MST editor [23,24]. This editor
provides structured manipulation of handwritten expressions and provides fea-
tures to enable flexible and interactive presentations. A limitation, however, is
that proofs remain unverified. We attempt to address this limitation by support-
ing computer-assisted verification of handwritten proofs. Proof assistants such
as Isabelle/HOL [25] and Coq [8] can be used to achieve this, but the use of these
requires knowledge of the theorem prover’s syntax and its intricacies, which has
the reputation of being a demanding task. Our work attempts to overcome this
by providing a system to interface with a theorem prover without any specific
knowledge of the backend proof assistant.

The availability of several different IDEs for existing theorem provers indi-
cates that the human-prover interaction is a concern. For Isabelle/HOL alone
there are several IDEs available, including Proof General [2], Isabelle/jEdit [31],
and Isabelle/Clide [21]. All of these require the use of keyboard and/or mouse
and the knowledge of the, often idiosyncratic, theorem prover’s syntax. In fact,
the community is still investigating how to improve current IDEs, as demon-
strated by the development of PIDE [31,32,33], a framework for prover interac-
tion and integration, and by Company-Coq [27], an extension of Proof General’s
Coq mode. Moreover, the support provided by these IDEs for auto-completion
of mathematical symbols suggests that typing these does not come naturally.

3 Requirements

The scope of the requirements presented in this section is limited to the con-
text of our work (teaching and research on calculational methods for correct-
by-construction program design) and is mostly based on comments found on
research papers written by exponents of the calculational method.

R1: Support for calculational mathematics. Given the context of our work,
the system should allow the user to write calculational proofs. It should be
easy to input mathematical symbols and unconventional mathematical for-
mulae (e.g. the Eindhoven quantifier notation [5]).

R2: Support for structure editing. Similarly to Math∫pad and MST [6,24],
the system should provide structure editing operations to assist the user in ef-
fectively writing handwritten calculational proofs and to ensure that human
errors are less likely to be introduced. Frequently used structural operations
like selection and copy of expressions and sub-expressions, group/ungroup
of sub-expressions, and distributivity operations should be supported.

R3: Support for handwritten input. It should be possible to handwrite cal-
culational proofs as one would normally do when using pen and paper. More-
over, as identified in [24], the result of structure editing rules on handwritten
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expressions should remain handwritten, since it is undesirable to mix differ-
ent writing and font styles, as doing so, can make presentations confusing.

R4: Support for learning, teaching and research. The system should sup-
port learning, teaching, and research on calculational methods for correct-by-
construction program design. It has already been argued that calculational
proofs offer some pedagogic advantages over conventional informal proofs
[12,13,15] and that students prefer or understand better calculational proofs
[10]. Moreover, a structure editor can assist students and teachers in learn-
ing and explaining how certain rules are applied [23]. A structure editor can
also assist researchers who use the calculational method, since they usually
write calculations that involve a great deal of syntactic manipulations of un-
interpreted and unconventional mathematical formulae (e.g. [4,11,16]). It is
desirable for the system to reduce the cognitive load of its users by providing
intelligent visual hints throughout the proof writing process.

R5: Support for formal verification. The system should allow mechanical
verification of handwritten calculational proofs. The need for mechanical ver-
ification of calculational proofs has been identified many years ago [22,30].
More recently, there has been work on mechanisation of calculational proofs
[7,17,20], but the problem of verifying handwritten calculational proofs re-
mains open. Moreover, any provers should be used transparently, i.e. the
system should hide all the knowledge required to translate handwritten in-
put into syntax accepted by provers. It is important to note that this includes
usability aspects other than just syntax — for example, the system should
be able to represent mathematical objects in a way that is appropriate in
the context of the proof and in the context of the theorem prover. Similar to
the idea put forward by Verhoeven and Backhouse [30], our system could be
seen as a user interface to a theorem prover. Ideally, the system should allow
expert users to define new interaction methods with the backend provers.

4 Proof-of-Concept Prototype

Our proof-of-concept research prototype is implemented in C# and is based on
an extension of Classroom Presenter (CP) [1] that uses the library MST [24].
Reusing these existing tools provides us with a structured editor of handwritten
mathematics that immediately meets the requirements R1, R2, R3, and, to a
certain extent, R4 (for example, intelligent visual hints are still missing).

The novelty of our prototype is that it adds preliminary support for verifi-
cation (R5): we added a new tool to CP’s toolbar that transforms individual
steps of a calculation into lemmas that can be proved by Isabelle/HOL. An ex-
ample of a proof that can be verified by our system is shown in Figure 1(c). The
user can select the new tool by clicking on the new toolbar button, and after
clicking on a step relation (e.g. equality), the system performs verification of the
corresponding individual step. Depending on the validity of the step, the system
either shows a green check-mark or a red cross (as illustrated). The proof shown
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Goal: Prove the theorem  P ∨ (P ⇒ Q) ≡ true
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Fig. 1. System overview. Users handwrite calculational proofs and proof steps are
translated into Isabelle/HOL to be verified. Invalid steps will be flagged (a), allowing
users to fix them (b). Full proofs can be verified on a step-by-step basis (c).

depends on the definition of implication, which can be defined either as

P ⇒ Q ≡ P ≡ P∧Q or as P ⇒ Q ≡ Q ≡ P∨Q

This means that P ⇒ Q can be replaced by either P ≡ P∧Q or by Q ≡ P∨Q.
However, a common mistake done by students is to swap the conjunction by the
disjunction (and vice-versa). This common mistake is illustrated in Figure 1(a),
where we can also see an overview of the steps taken by our prototype to verify
a proof step. Once the structure of the handwritten input is created (using
the features available in the MST library), our system converts the recognised
structure of the step into a lemma that can be interpreted by Isabelle/HOL.
We also attach a proof to each generated lemma. In the current version of the
system, we simply instruct Isabelle/HOL to try and prove the goal automatically
(achieved by apply(auto)). In Figure 1(a), Isabelle/HOL fails to prove the step
automatically and the user is informed. In Figure 1(b), Isabelle/HOL succeeds
in verifying the step.

More specifically, the first step of the calculation shown in Figure 1(b) would
be translated into the following:

lemma

" P \<or> (P \<longrightarrow> Q)

=

P \<or> (Q = (P \<or> Q))"

apply (auto)

done

Currently, this translation only supports calculational propositional logic op-
erators [9,14], but our code can easily be extended to include a larger mathe-
matical domain (however, other proof tactics may be needed). Other translations
are possible and will be explored in future iterations of this work. Communica-
tion with Isabelle/HOL is currently performed via an external process that we
programmed. This process accepts plain-text input encoding a lemma and its
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proof. It then embeds the input into a generated Isabelle/HOL theory file cre-
ated on the fly, attempts to verify the theory, and returns a modified version of
Isabelle/HOL’s output to the user interface. The handwritten step is then an-
notated with either a green check-mark or a red cross, depending on the result
of the verification. Figure 2 shows a screenshot of our current prototype in use
when writing the proof discussed above. It shows that the first step has already
been verified and the user is currently applying the distributivity rule using a
gesture (this is one of MST’s features that we imported into our system).

Fig. 2. Screenshot of our prototype in action. The first step of the calculation was
verified using the new tool (highlighted button). The user is currently applying the
distributivity rule using a gesture.

5 Conclusion and Future Work

We have described our first steps towards a system that allows users to ver-
ify handwritten calculational proofs. Our proof-of-concept prototype supports
propositional logic proofs and uses Isabelle/HOL as the backend prover. The
major novelty of this work lies on the implementation of the requirement for
formal verification (R5): the prototype can formally verify handwritten calcu-
lational proofs without the need to learn how to use a theorem prover. The
implementation of the prototype shows that the system we envisage is feasible
and that it has the potential to assist its users in writing correct proofs.

Having a prototype will now allow us to demonstrate the potential of such
a tool to target users. Our next step will be to demonstrate the prototype in
learning, teaching, and research environments to obtain user feedback. This will
enable us to understand further requirements of likely users of this tool. Once
this step is completed, we will implement a more complete system that will im-
prove the interaction with the backend prover (e.g. feedback from the background
proof assistant to include hints for completing proof steps or counter-examples).
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For this, we plan to use PIDE [31,32,33]. We also intend to use hints handwritten
by users to justify proof steps in the verification process, allowing the detection
of inconsistent justifications. The feedback from users will inform the way in
which hints will be dealt with. We further plan to support multiple backend
provers and to link proofs of programs with the code generation mechanisms
available in some theorem provers, such as Isabelle/HOL and Coq. We will take
into account the feedback received from users and adapt the system to meet any
further requirements that arise. We plan to continue using rapid prototyping to
demonstrate any new features to users before providing complete implementa-
tions. We anticipate that several iterations of rapid prototyping and evaluations
will be needed before we complete the first full implementation.
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