
Generative Story Worlds as Linear Logic Programs

Chris Martens
Carnegie Mellon University
cmartens@cs.cmu.edu

João F. Ferreira
Teesside University

J.Ferreira@tees.ac.uk

Anne-Gwenn Bosser
ENI Brest

Lab-STICC UMR6285
bosser@enib.fr

Marc Cavazza
Teesside University

M.O.Cavazza@tees.ac.uk

Abstract

Linear logic programming languages have been identi-
fied in prior work as viable for specifying stories and
analyzing their causal structure. We investigate the use
of such a language for specifying story worlds, or set-
tings where generalized narrative actions have uniform
effects (not specific to a particular set of characters or
setting elements), which may create emergent behavior
through feedback loops.
We show a sizable example of a story world specified
in the language Celf and discuss its interpretation as a
story-generating program, a simulation, and an interac-
tive narrative. Further, we show that the causal analysis
tools available by virtue of using a proof-theoretic lan-
guage for specification can assist the author in reason-
ing about the structure and consequences of emergent
stories.

Introduction
Linear logic (Girard 1987) (LL) has been proposed as a
suitable conceptual framework to specify and reason about
interactive narratives (Bosser, Cavazza, and Champagnat
2010), which has led to a variety of applications such as
narrative analysis (Bosser et al. 2011), narrative genera-
tion (Martens et al. 2013), and authoring and validation
tools (Dang et al. 2011). At the same time, the success of
logically-motivated languages such as Inform 71 together
with the documented interest of Interactive Fiction (IF) writ-
ers for emergent narratives2 suggests that the IF community
may welcome a programming language approach to the au-
thoring of rule-based, generative story worlds.

Our work proposes the use of a logic programming lan-
guage for specifying emergent systems representing narra-
tive worlds. We use a language based on constructive LL,
which supports action description, use of resources, and
changes imposed on the story world, and offers a basis for
analysis of storylines and causal relationships, all within the
same theory of proof. This approach lets us have our cake

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1http://www.inform7.com
2See for instance Emily Short’s article on emergence in nar-

rative interaction design at http://emshort.wordpress.
com/2013/02/14/introducing-versu/

(in the sense of designing narratives with richly-interacting
processes) and eat it, too (in the sense of predicting and con-
trolling the consequences of such processes).

Related Work
Planning systems have been widely adopted for the con-
struction of interactive narratives (Young 1999; Porteous,
Cavazza, and Charles 2010), mostly because of their support
for the representation of causality. It is generally accepted
that LL is a strong candidate for such a representation (Gi-
rard and Lafont 1987), and a proof in LL can be equated
to a plan (Masseron 1993; Masseron, Tollu, and Vauzeilles
1993). Aside from surface differences, such as LL predicates
having meaningful multiplicity, the main benefit of using LL
is that planning actions, plan synthesis, and plans themselves
can all be accounted for uniformly under a minimal theory
of inference and proof.

Standard logic programming approaches to narratives
provide evidence for the concise and readable nature of
declarative specification (Grasbon and Braun 2001; Lang
1999) but lack the native ability to model state and causality
afforded by LL. One logic programming engine for manag-
ing generativity in games uses the Event Calculus (EC) to
overcome this shortcoming (Smith and Mateas 2011).

LL has previously been explored for game analysis, as
a front-end for Petri nets (Collé, Champagnat, and Prigent
2005). Further development demonstrated the value in using
a constructive formulation of LL to directly correlate the for-
mal notion of story with the notion of logical proof (Bosser,
Cavazza, and Champagnat 2010; Bosser et al. 2011). Dang
investigated LL for complete exploration and validation
of scenarios for educational purposes (Dang, Champagnat,
and Augeraud 2013). However, by relying on a backward-
chaining proof search interpretation, these works have fa-
vored authorial intent above narrative emergence. Our con-
tribution is to investigate LL for modeling story scenarios
which are primarily exploratory and generative, rather than
purely goal-driven, using forward-chaining proof search.
This duality between intent (backward chaining) and explo-
ration (forward chaining) has previously been used for com-
bining deliberative and reactive behaviour for agent mod-
elling (Harland and Winikoff 2004). Our language of inves-
tigation, called Celf (Schack-Nielsen and Schürmann 2008),
supports both forward and backward chaining through the

focusing theory of proof search (Chaudhuri, Pfenning, and
Price 2008).

Contributions
Expanding on our previous work (Martens et al. 2013), we
demonstrate how to encode more general story settings that
are parametric over arbitrary world states, settings, and char-
acters. We demonstrate that these rules create nontrivial
feedback loops in terms of their causal structure, allowing
for long and perhaps unpredictable chains of events to cre-
ate pivotal events in stories.

We further extend our use of tools to this case, including
those we get for free from the language Celf as well as the
extrinsic graphical tool and query language. These tools il-
lustrate the use of proof term structure in exploring the con-
sequences of rules which may have been conceived in the
haphazard, ad-hoc way of first draft designs.

The takeaway point of this paper is that encoding story
worlds in a linear logic programming language allows for
informative exploration of their consequences. For the re-
mainder of the paper, we will support this claim by describ-
ing an example and its semantics, demonstrating how non-
deterministic proof search can be used to generate stories,
and sketching our work in progress on tools for analyzing
and interacting with story models.

System Overview
The basis of our framework is the use of LL as a language for
specifying actions. This setup is similar to the use of plan-
ning languages such as STRIPS (Fikes and Nilsson 1971) in
the sense that we model the world as a collection of predi-
cates and specify the available actions declaratively in terms
of those predicates.

A world state is an unordered collection of predicates ∆,
and actions are written as state transitions A({B}, signi-
fying an action that replaces the state components described
by A with those described by B.

The process of execution (or simulation or generation) of
a story, then, is to take a user-specified initial state ∆0, find
some rule r in the specification Σ that can apply, and apply
it to get ∆1. This process is iterated until no further rules
apply, at which point we say we have reached quiescence.

When a rule r : A ({B} is applied on state ∆, A, the
next state is ∆, B. The component ∆ which is irrelevant to
the rule stays the same, solving the frame problem present
in other settings, such as event and situation calculi (Hayes
1971). This property arises from the inference rules defining
(as the proposition-level internalization of logical entail-
ment.

We summarize the connectives and notation used below:
abstract syntax concrete syntax meaning
A({B} A -o {B} replacement
A⊗B A * B conjunction of resources

!A !A persistent resource
Persistent resources may be regarded as permanent facts

as in standard propositional logics.

Example: A Romantic Tragedy Story World
The key to programming with LL is formulating one’s prob-
lem in terms of resources, i.e. the components of a story that
may interact and change. Then, the author describes how
(through what actions) those components change. In a bit
more detail, the process for designing a story world takes
the following shape:

1. Identify the components of story state, such as physi-
cal location and character relationships. Declare a pred-
icate (type) for each of these; for example, declare that
anger C C’ is a well-formed state component when C
and C ′ are characters. We map predicates in our example
to their intended meanings in the table below.

2. Identify the narrative actions, i.e. ways that characters
can interact with each other or their environs to cause
changes in the state. For instance, a rule for flirting with
a character other than one’s lover may cause anger in the
lover directed at both flirters, which is represented by the
rule
do/flirt/conflict
: eros Flirter Flirtee * eros Other Flirtee

-o {eros Flirter Flirtee * eros Flirtee Flirter
anger Other Flirter * anger Other Flirtee}.

(The words beginning with capital letters, by convention,
mark logic variables, and are implicitly quantified at the
beginning of the rule—the names themselves are arbi-
trary.)

A complete story world specification is simply a collec-
tion of these predicate and rule declarations. The author may
then join it with its complementary half, a specification of
setting elements, characters, and initial states, to generate
stories or analyze the system we have described. The re-
mainder of this section carries out an example, a case study
of a Shakespeare-inspired romantic tragedy world, follow-
ing the aforementioned workflow.3

The state we model includes sentiments between char-
acters (several forms of love and hate), physical locations
and basic movement, possession of key objects (such as
weapons), relationship states (marriage and being single),
desires for objects, and solitary emotions (depression).

Predicate Meaning
at C L C is (alive) in location L
has C O C possesses an object O

neutral C C’ C feels neutrally toward C ′

philia C C’ C feels affection toward C ′

anger C C’ C feels anger toward C ′

eros C C’ C feels attraction toward C ′

unmarried C C is unmarried
married C C’ C is married to C ′

depressed C C is depressed
suicidal C C is suicidal
!dead C C is dead

!murdered C C’ C murdered C ′

!actor C C is a character in the story

3The complete, runnable code for this example can be
found at https://github.com/chrisamaphone/
interactive-lp/blob/master/examples/tragedy.
clf.

These predicates do not specify a particular cast of char-
acters or setting, but they could be said to pertain to a par-
ticular genre of story, in this case romance and tragedy. The
delineation of the story world into predicates is an act of
careful human design, often iterated with the generation of
stories, and the choices made here make all the difference
in terms of which actions are possible to write and therefore
what shapes the story can take. For instance, the choice to in-
clude two kinds of love, eros and philia, means that we
can codify social rules about sexual relationships between
characters. Similarly, the choice not to include a predicate
for a character’s gender renders it impossible to enforce het-
eronormative relationships. We have to make a choice about
whether we want to model a realistic description of human
behavior (which often contradicts social norms) or enforce
social norms by constraining actions with our formal de-
scription.

A selection of rules for our chosen genre is given below,
starting with the rules for basic social interaction:4

do/formOpinion/like
: at C L * at C’ L *
neutral C C’
-o {at C L * at C’ L * philia C C’}.

do/formOpinion/dislike
: at C L * at C’ L *
neutral C C’
-o {at C L * at C’ L * anger C C’}.

do/compliment/private
: at C L * at C’ L * philia C C’
-o {at C L * at C’ L * philia C C’ * philia C’ C}.

do/compliment/witnessed
: at C L * at C’ L * at Witness L * philia C C’ *

anger Witness C’
-o {at C L * at C’ L * at Witness L * philia C C’ *

anger Witness C’ * philia C’ C * anger Witness C}.

do/insult/private
: at C L * at C’ L * anger C C’

-o {at C L * at C’ L * anger C C’ * anger C’ C *
depressed C’}.

do/insult/witnessed
: at C L * at C’ L * at Witness L *

anger C C’ * philia Witness C’
-o {at C L * at C’ L * at Witness L *

anger C C’ * philia Witness C’ * anger C’ C *
depressed C’ * anger Witness C}.

mixed_feelings
: at C L * anger C C’ * philia C C’ -o {at C L * neutral C C’}.

Note that there are two “versions” each of the actions for
insulting and complimenting, one that happens “in private”
and another that affects a witness in the same location. This
encoding signals a weakness: it is unnatural to represent a
broadcast of an action affecting every character who might
be in range, since LL primarily codifies local state changes.
On the other hand, this mechanism’s nondeterminism could
be argued to reflect the chance involved in whether an action
goes noticed.

Next we codify the rules for romantic interaction, which
include tranformations between eros and philia as well as
flirting, marriage, and divorce:
do/fallInLove
: at C L * at C’ L’ *
eros C C’

4The location predicates at C L in these rules signify not just
location, but also that the character in question is alive and available
in the story. The at atom is consumed when a character dies.

-o {at C L * at C’ L’ * eros C C’ * philia C C’}.

do/eroticize
: at C L * at C’ L’ *
philia C C’ * philia C C’ * philia C C’ * philia C C’
-o {at C L * at C’ L’ * philia C C’ * eros C C’}.

do/flirt/ok
: at C L * at C’ L * eros C C’ * unmarried C * unmarried C’

-o {eros C C’ * eros C’ C *
unmarried C * unmarried C’ *
at C L * at C’ L}.

do/flirt/discreet
: at C L * at C’ L * eros C C’
-o {eros C C’ * eros C’ C * at C L * at C’ L}.

do/flirt/conflict
: at C L * at C’ L * at C’’ L *
eros C C’ * eros C’’ C

-o {eros C C’ * eros C’ C * eros C’’ C

* anger C’’ C’ * anger C’’ C

* at C L * at C’ L * at C’’ L}.
do/marry
: at C L * at C’ L *
eros C C’ * philia C C’ *
eros C’ C * philia C’ C *
unmarried C * unmarried C’
-o {married C C’ * married C’ C * at C L * at C’ L *

eros C C’ * eros C’ C * philia C C’ * philia C’ C }.

do/divorce
: at C L * at C’ L’ *
married C C’ * married C’ C * anger C C’ * anger C C’
-o {anger C C’ * anger C’ C * unmarried C * unmarried C’

* at C L * at C’ L’}.

do/widow
: married C C’ * at C L * dead C’

-o {unmarried C * at C L}.

These rules include the generation of sentiments from a
netural stance, transformations between the two kinds of
love philia and eros, and flirting, which strengthens
both kinds of love, but causes anger if witnessed by another
paramour. We also include rules that modify the marriages
of characters.

Next we supply rules governing death and violence:
do/murder
: anger C C’ * anger C C’ * anger C C’ * anger C C’ *

at C L * at C’ L * has C weapon
-o {at C L * !dead C’ * !murdered C C’ * has C weapon}.

do/becomeSuicidal
: at C L *

depressed C * depressed C * depressed C * depressed C
-o {at C L * suicidal C * wants C weapon}.

do/comfort
: at C L * at C’ L *
suicidal C’ * philia C C’ * philia C’ C
-o {at C L * at C’ L *

philia C C’ * philia C’ C * philia C’ C}.

do/suicide
: at C L * suicidal C * has C weapon -o {!dead C}.

do/mourn
: at C L * philia C C’ * dead C’

-o {at C L * depressed C * depressed C}.

do/thinkVengefully
: at C L * at Killer L’ *

philia C Dead * murdered Killer Dead
-o {at C L * at Killer L’ * philia C Dead *

anger C Killer * anger C Killer}.

The violence module introduces several potential feed-
back loops between murder and vengeance, suicide, mourn-
ing, and depression.

Finally, we have a few actions that can affect possession:
do/give
: at C L * at C’ L * has C O * wants C’ O * philia C C’

do/steal
: at C L * at C’ L * has C O * wants C’ O
-o {at C L * at C’ L * has C’ O * anger C C’}.

do/loot
: at C L * dead C’ * has C’ O * wants C O

-o {at C L * has C O}.

Given this set of rules, we note that the story world
is multi-agent in nature—the interactor with such a story
doesn’t obviously “play” one particular character, and the
rules aren’t defined as “behaviors” attached to a given agent.
They portray the interiority of all characters at once, allow-
ing them to be referenced and changed in combination.

Initial State
After describing the general rules of our Shakespearean
tragedy story world, which are parameterized over charac-
ters and locations, we can fill in specific elements, such as
the characters and setting of Romeo and Juliet, to have a
complete and runnable specification.

First we can describe the persistent (unchanging, i.e. not
linear) facts about the story, in this case the world map and
the cast of characters:
mon/town : accessible mon_house town.
town/mon : accessible town mon_house.
cap/town : accessible cap_house town.
town/cap : accessible town cap_house.

a-romeo : actor romeo.
a-juliet : actor juliet.
a-montague : actor montague.
a-capulet : actor capulet.
a-mercutio : actor mercutio.
a-nurse : actor nurse.
a-tybalt : actor tybalt.
a-apothecary : actor apothecary.

Next, we need to designate the initial state of all the linear
predicates. It could look something like this:
story_start :
init -o { at romeo town * at montague mon_house * at capulet cap_house

* at mercutio town * at nurse cap_house * at juliet town

* at tybalt town * at apothecary town

* has tybalt weapon * has romeo weapon * has apothecary weapon

* unmarried romeo * unmarried juliet

* unmarried nurse * unmarried mercutio * unmarried tybalt

* unmarried apothecary

* anger montague capulet * anger capulet montague

* anger tybalt romeo * anger capulet romeo * anger montague tybalt

* philia mercutio romeo * philia romeo mercutio

* philia montague romeo * philia capulet juliet

* philia juliet nurse * philia nurse juliet

* neutral nurse romeo

* neutral mercutio juliet * neutral juliet mercutio

* neutral apothecary nurse * neutral nurse apothecary}.

The first two groups of atoms describe the story world
locations where the characters begin and their possessions.
The next group represents which characters are unmarried
at the start of the story. The next two groups represent exist-
ing relationships (sentiments) among characters, and finally
the last group represents which characters haven’t met each
other yet (and so feel neutrally towards each other).

Serendipity
While general-purpose, generative story rules serve to create
an emergent notion of story, one might argue that in many
stories, coincidence or serendipity plays a large role in the
story being interesting. We have a way to codify the idea of
serendipitous events as well: it is that rules of the formA(

{B} can be treated on the same level as other propositions,
and thus included in initial states.

For example, we encode Romeo and Juliet’s “love at
first sight” as a single rule added to the consequent of
story_start:
story_start :
init -o {

...
{Forall L. at romeo L * at juliet L

-o {eros romeo juliet * at romeo L * at juliet L}}
...}.

This single-use rule dictates that whenever Romeo and
Juliet are in the same place, Romeo may gain eros for Juliet.
The construct Forall L ... allows the rule to be param-
eterized over the shared location where they meet. (This use
of quantification differs from the implicit quantification hap-
pening on the outside of every rule; here, we want to bind the
location locally rather than over the entire story_start
rule.)

Final States
We could at this point call the example complete and ask
the system to begin executing the rules from the given ini-
tial state. But before doing so, we might be interested in
some high-level structural questions, such as: do stories in
this specification end? If so, how do they end?

Answering this question requires thinking about the rules
operationally rather than as static descriptions of possi-
ble actions. The operational semantics of the program is
based on the formal description given in the section System
Overview wherein a step is an evolution of a context ∆, A
to a context ∆, B along a rule A ({B}.5 The simulation
terminates when no more steps can be made, i.e. when no
more rules apply to the current context.

We make the following observation: all of the character
actions in our specification require at least one character to
be alive (represented by the at predicate). Most of the rules
preserve location/aliveness of the characters, but the actions
corresponding to character deaths (murder and suicide) do
not. Therefore, the story will terminate when all characters
have died.

At several points in the story, multiple rules will apply.
If we consider a fair operational semantics, i.e. one where
when multiple rules apply, each has some positive chance of
being chosen, then eventually the termination condition will
be reached. How long the story goes on before it ends is a
function of the more specific probabilities a rule is selected
with in the story engine – which property is not defined by
the language semantics, but is observable of the implemen-
tation.

For this example, we decided to make termination con-
ditions that would be met more frequently for the sake of
shorter stories, more dense with interesting behavior. This
also allows us to codify a set of “story endings.” To do
this, we create new atoms final and nonfinal, add
nonfinal to the initial state, and write a few rules that

5This is a simplification of the story—the true transition seman-
tics are given by rules that do not require the rule’s precondition to
be already formed in the context, but may perform backward search
to find it.

lead from desired end conditions to the final atom, con-
suming nonfinal, e.g.:
ending_happy
: nonfinal *
actor C * actor C’ *
at C L * at C’ L * married C C’
-o {final}.

ending_vengeance
: nonfinal *

actor C1 * actor C2 * actor C3 *
killed C1 C2 * philia C3 C2 * killed C3 C1
-o {final}.

Proofs as Stories
To reiterate, the takeaway point of this paper is that encod-
ing story worlds in a linear logic programming language al-
lows for informative exploration of their consequences. Two
of these exploration techniques are random story generation
and structural analysis, and what enables those techniques
to fall naturally out of our encoding is the fact that there
is a direct and formal correspondence between stories and
proofs.

Once we write our specification as a collection of logical
formulas, we can initiate a query such as
?- init -o {final}.

This query asks whether there is a proof from the state de-
scribed by init to the atom final. Initially, proof search
is goal-directed or backward-chaining: it adds init to the
current state and considers how to prove {final}. Before
now, we have been treating the curly braces {-} as mean-
ingless, but they mean something in terms of proof search: it
must now switch to a forward-chaining or generative mode,
running inference forward from the init atom. Only once
the entire story has terminated will it look for final, at
which point search will succeed if it finds it.

But the point of executing the query isn’t really to find out
whether the initial state leads to a valid conclusion. What
we are interested in is the trace generated by execution—the
witness to the validity of the proposition, i.e. the proof!

Interpreting propositions as types, we assign a proof term
to the implication A (B as a λ-term, or function, from
terms of type A to terms of type B. Within the body M of
the function λx:A.M , the story term can make use of the
variable x, e.g. by projecting out its components and apply-
ing rules in the story signature to them.

Proofs of monadic goals, such as, in our example,
{final}, are lists of let-bindings that capture the trace of
actions, e.g.:
...
let {[X73, [X74, [X75, [X76, X77]]]]}

= do/insult/private [a-tybalt, [a-romeo, [X68, [X66, X72]]]] in
let {[X85, [X86, X87]]}

= do/becomeSuicidal [a-romeo, [X79, [X41, [X59, [X52, X77]]]]] in
let {[X88, [X89, [X90, [X91, X92]]]]}

= do/comfort [a-mercutio, [a-romeo,
[X78, [X85, [X86, [X81, X83]]]]]] in

let {[X101, [!X102, [!X103, X104]]]}
= do/murder

[a-romeo, [a-tybalt,
[X58, [X40, [X76, [X51, [X94, [X96, X27]]]]]]]] in

let {[X105, [X106, [X107, X108]]]}
= do/compliment/private

[a-nurse, [a-juliet, [X46, [X47, X30]]]] in
let {[X109, [X110, [X111, X112]]]}

= do/compliment/private
[a-juliet, [a-nurse, [X106, [X105, X108]]]] in

let {[X113, X114]}

= do/loot [a-romeo, [a-tybalt, [X101, [X102, [X26, X87]]]]] in
...

This fragment of trace shows how certain scenes, such as
one wherein Tybalt drives Romeo to murder with Mercutio’s
support, are interleaved with independent scenes, such as a
loving conversation between the Nurse and Juliet.

Within the let-binding portion of the trace, we see a
record of the story rules selected, which can be seen as
a linear progression of events. But additionally, each binding
let {[X1, ..., Xn]} = rule [Y1, ..., Ym]
represents the call of rule on previously-generated re-
sources Y1 ... Ym representing its antecedent, gen-
erating new resources X1 ... Xn representing its
consequent. This allows us to analyze the proof term for
dependency structure, specifically revealing which events
are indepedenent and can be thought of as concurrent
storylines.

Here is a graphical depiction of the let-binding for Mer-
cutio comforting Romeo in the above trace fragment:

do/comfort

X78 X85 X86
X81

 X83

X88
 X89 X90 X91 X92

X78 : at mercutio L
X85 : at romeo L
X86 : suicidal romeo
X81 : philia mercutio romeo
X83 : philia romeo mercutio

X88 : at mercutio L
X89 : at romeo L
X90 : philia mercutio romeo
X91 : philia romeo mercutio
X92 : philia romeo mercutio

The variables at the top of the image represent the in-
puts/antecedents to the rule, including the persistent wit-
nesses of Romeo and Mercutio’s actorhood, which arise
from the signature, as well as those generated by prior let-
bindings. The variables in the bottom are freshly generated
by the rule, representing its outputs/consequents.

Although the let-bindings appear presented lin-
early, because they encode data dependency infor-
mation, independent forks can actually be extri-
cated from one another through a notion of con-
current equality derived from the syntactic struc-
ture, i.e. let x1 = M1 in let x2 = M2 in M
may be considered the same trace as
let x2 = M2 in let x1 = M2 in M iff the

inputs of M2 are separate from the outputs of M1.
It is important to emphasize the critical use of Celf’s basis

in constructive logic, which enables the identification of pro-
gram execution with a structured witness to examine, com-
plete with dependency structure.

Graphical Analysis
For the sake of making the dependency structure more visu-
ally explicit, we have been developing a tool that automati-
cally translates generated stories into causal diagrams in the
form of directed graphs. Nodes of the graph are actions in
the story, and edges can be viewed as causal relationships
between story events involving those actions.

This tool takes a proof term and the story specification as
inputs, and it generates the extrapolation of the let-binding
illustration given in the previous section to the whole trace:
we wind up with a causal network of action nodes represent-
ing the story’s nonlinear progression of events, e.g.:

init

do/insult/privatedo/formOpinion/dislike

do/compliment/witnessed

do/travelTo

do/compliment/private

do/murder

do/marry

ending_1

do/steal

do/thinkVengefully

do/mourn

do/becomeSuicidal

cleanup/1

do/eroticize

do/suicide

do/flirt/discrete

The tool also has an interface for queries on sets of traces.
E.g. the query exists ending_1 would tell us the set
of stories with ending_1 (a marriage and a death). This
tool allows us to test our specifications for how closely they
match our authorial intent. For instance, if we want to find
out if any stories contain unfulfilled vengeance, we might
issue the query
exists do/thinkVengefully && ˜link do/thinkVengefully do/murder

(read as: there exists a “think vengefully” action, but there
is no link between “think vengefully” and “murder”) which
might tell us that no stories satisfy the predicate. If we intend
for vengeance to occur more or less frequently, we may tune
the parameters of the rules (e.g. how many anger atoms it
generates) and run the query again.

Ongoing Work
Suppose we wanted to treat the same logic program not as
a random story generator but as an interactive story. At a
first cut, a player could interact with proof search by select-
ing a rule whenever proof search would otherwise select one
randomly between several that apply. But in the interest of
creating a more exploratory feel, rather than present a finite
set of available story branches, we wish to follow the in-
teractive fiction tradition of allowing a general grammar of
actions. The action language for our example might corre-
spond loosely to the available rules, e.g.
insult(C, C’) compliment(C, C’) flirt(C, C’) marry(C, C’)
murder(C, C’) comfort(C, C’) suicide(C) divorce(C, C’)

Parameterizing actions over all of the characters they con-
cern supposes an omnicient point of view where the inter-
actor may control all characters. If we suppose a single-
character point of view, then the first parameter C in the ac-
tions above becomes implicit. After giving this language of
actions, we can modify the original program so that the rules
concerning, e.g., flirtation, take an extra precondition that an

atom do(flirt(C, C’)) appears. This atom should be
linear so that the rule only fires once.

We are working on an extension to the core language un-
derlying Celf that allows the introduction of action atoms
by the player once the program has reached quiescence,
which we believe soundly captures the idea of interpreter
and interactor taking turns. We formalize this idea of turn-
taking as a language construct called phases (Martens 2013),
which turn out to be generally useful for other engineer-
ing concerns, such as structuring a program into indepen-
dent (module-like) components. Further, phases enable us
to describe the broadcast behavior we were missing earlier:
broadcast can be its own phase that iterates a rule to quies-
cence over all occupants of a room. After the introduction of
phases, we believe the language will be suitable as the core
of a system for authoring large, expressive works of inter-
active fiction and exploratory interactive simulation (“sand-
box” games). In the context of a larger project, of course,
we would also need tools for parsing and generating natural
language.

We are also developing a more complete suite of analy-
sis capabilities, akin to model checking, that would allow
authors to predict and control the range of narrative pos-
sibilities, perhaps choosing to restrict them to a more lin-
ear causality tree (in the case of a rigid narrative) or re-
lax the constraints (in the case of a sandbox world). We
are designing a verification-like system overlaying the lan-
guage wherein the author may, on a per-phase basis, write
down properties (invariants, preconditions, and postcondi-
tions) to the logic program, which may then be automat-
ically checked. An application of this functionality might
include ensuring as an invariant that, whenever there is a
locked door, a key is reachable from the player’s location.

Summary of Contributions
We see this work as making the following contributions to
narrative technologies:
• A programming language-based approach to authoring in-

teractive stories, founded on a theory which yields an in-
terpretation of stories as logical proofs.

• Demonstration of how said interpretation enables the gen-
eration, analysis, and interactive interpretation of stories
from story worlds.

• Atop prior work in formalizing stories in linear logic, we
show that this approach can be used not only for validat-
ing goal-driven story interactions but also for sculpting
exploratory, reactive experiences.
Ongoing work should allow for combining exploratory

and verificational approaches to authorship, laying the theo-
retical groundwork for a language for generative interactive
fiction.

Acklowledgments
The authors thank the anonymous reviewers for their thor-
ough and encouraging feedback. The first author thanks
Frank Pfenning, Martin van Velsen, and Adam Smith for
conversations that helped contextualize our work.

References
Bosser, A.-G.; Courtieu, P.; Forest, J.; and Cavazza, M.
2011. Structural analysis of narratives with the Coq proof
assistant. In ITP.
Bosser, A.-G.; Cavazza, M.; and Champagnat, R. 2010. Lin-
ear Logic for non-linear storytelling. In ECAI 2010, volume
215 of Frontiers in Artificial Intelligence and Applications.
IOS Press.
Chaudhuri, K.; Pfenning, F.; and Price, G. 2008. A log-
ical characterization of forward and backward chaining in
the inverse method. Journal of Automated Reasoning 40(2–
3):133–177.
Collé, F.; Champagnat, R.; and Prigent, A. 2005. Sce-
nario analysis based on linear logic. In Proceedings of the
2005 ACM SIGCHI International Conference on Advances
in Computer Entertainment Technology, ACE ’05. New
York, NY, USA: ACM.
Dang, K. D.; Hoffmann, S.; Champagnat, R.; and Spierling,
U. 2011. How authors benefit from linear logic in the author-
ing process of interactive storyworlds. In ICIDS, 249–260.
Dang, K. D.; Champagnat, R.; and Augeraud, M. 2013. A
methodology to validate interactive storytelling scenarios in
linear logic. T. Edutainment 10:53–82.
Fikes, R. E., and Nilsson, N. J. 1971. STRIPS: A new
approach to the application of theorem proving to problem
solving. In Proceedings of the 2Nd International Joint Con-
ference on Artificial Intelligence, IJCAI’71, 608–620. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc.
Girard, J.-Y., and Lafont, Y. 1987. Linear Logic and lazy
computation. In Ehrig, H.; Kowalski, R.; Levi, G.; and
Montanari, U., eds., TAPSOFT ’87, volume 250 of LNCS.
Springer Berlin / Heidelberg. 52–66.
Girard, J.-Y. 1987. Linear logic. Theoretical Computer
Science 50(1):1–102.
Grasbon, D., and Braun, N. 2001. A morphological ap-
proach to interactive storytelling. In Proceedings of the Con-
ference on Artistic, Cultural and Scientific Aspects of Exper-
imental Media Spaces (cast01).
Harland, J., and Winikoff, M. 2004. Agents via mixed-
mode computation in linear logic. Annals of Mathematics
and Artificial Intelligence 42:167–196.
Hayes, P. J. 1971. The Frame Problem and Related Prob-
lems on Artificial Intelligence. Stanford University.
Lang, R. R. 1999. A declarative model for simple narra-
tives. In Narrative Intelligence: Papers from the AAAI Fall
Symposium. AAAI Press.
Martens, C.; Bosser, A.-G.; Ferreira, J. F.; and Cavazza, M.
2013. Linear logic programming for narrative generation. In
Logic Programming and Nonmonotonic Reasoning 2013.
Martens, C. 2013. Logical interactive programming for nar-
rative worlds. PhD thesis proposal, Carnegie Mellon Uni-
versity.
Masseron, M.; Tollu, C.; and Vauzeilles, J. 1993. Generat-
ing plans in Linear Logic: I. Actions as proofs. Theoretical
Computer Science 113(2):349–370.

Masseron, M. 1993. Generating plans in Linear Logic: II.
A geometry of conjunctive actions. Theoretical Computer
Science 113(2):371–375.
Porteous, J.; Cavazza, M.; and Charles, F. 2010. Apply-
ing planning to interactive storytelling: Narrative control
using state constraints. ACM Trans. Intell. Syst. Technol.
1(2):10:1–10:21.
Schack-Nielsen, A., and Schürmann, C. 2008. Celf — a log-
ical framework for deductive and concurrent systems (sys-
tem description). In Proceedings of the International Joint
Conference on Automated Reasoning (IJCAR’08), 320–326.
Springer LNCS 5195.
Smith, A. M., and Mateas, M. 2011. Answer set program-
ming for procedural content generation: A design space ap-
proach. IEEE Trans. Comput. Intellig. and AI in Games
3(3):187–200.
Young, R. M. 1999. Notes on the use of plan structures in
the creation of interactive plot. In Narrative Intelligence:
Papers from the AAAI Fall Symposium. AAAI Press.

