
Camila Revival: VDM meets
Haskell

Overture Workshop
18 July 2005, Newcastle upon Tyne, UK

Co-located with FM’05

Joost Visser, J.N. Oliveira, L.S. Barbosa, J.F. Ferreira, and A. Mendes

DI/U.Minho Braga, Portugal

Overture — 07/18 – p.1/32

CAMILA Revival

FM tools at Minho

CAMILA software (1986-1997)

VDMTools (1998-2005)

What next?

CAMILA Revival (Haskell based)

Overture (Eclipse based)

Why Haskell?

Overture — 07/18 – p.2/32

CAMILA Revival

Objectives

FM perspective: exploit Haskell’s advanced type system
and extensive suite of libraries for specification purposes.

FP perspective: bring VDM features, such as constrained
datatypes and partial functions, into the functional
programmer’s reach.

So far

Capture VDM operations in Haskell libraries (CPrelude)

Implement VDM interpreter in Haskell (iCamila)

Model VDM state features monadically

Model VDM partiality features monadically (current paper)

Overture — 07/18 – p.3/32

VDM versus Haskell

� Specification � Programming

� Set-theoretic � Type-theoretic

� Numerous built-in operators � Numerous library functions

� Strict � Lazy

� Implicit functions � ?

� Datatype invariants � ?

� Pre / post conditions � ?

� State � ?

Overture — 07/18 – p.4/32

Why Haskell?

Component-oriented design relies on
compositionality — the true basis of software
construction — for instance

//

�

// //

Recall

Unix pipes g | f

Functional composition,

��� �
� � � � � �

etc

Ideal world:

// // //

Semantics of real world ?

inv- inv-

// // // // // //

pre- pre-

Internal state

Claim: just write (monadic) .! instead of

Overture — 07/18 – p.5/32

Why Haskell?

Ideal world:

� �

//

�

// //

� �

�

� � � ��
�

� � � � �

Semantics of real world ?

inv- inv-

// // // // // //

pre- pre-

Internal state

Claim: just write (monadic) .! instead of

Overture — 07/18 – p.5/32

Why Haskell?

Ideal world:

� �

//

�

// //

� �

�

� � � ��
�

� � � � �

Real world!
inv- inv-

�

// //

� �

// //

�

// //

pre- � pre-

Internal state

Semantics of real world ?

inv- inv-

// // // // // //

pre- pre-

Internal state

Claim: just write (monadic) .! instead of

Overture — 07/18 – p.5/32

Why Haskell?

Ideal world:

� �

//

�

// //

� �

�

� � � ��
�

� � � � �

Semantics of real world ?

�
�

�
�

inv-

�

inv-
�

�

// //

�

�

// //

�

�

// //

pre-

�

pre-

�

Internal state

�
�

�
� �

� � � � � � � � � �

Claim: just write (monadic) .! instead of

Overture — 07/18 – p.5/32

Why Haskell?

Ideal world:

� �

//

�

// //

� �

�

� � � ��
�

� � � � �

Semantics of real world ?

�
�

�
�

inv-

�

inv-
�

�

// //

�

�

// //

�

�

// //

pre-

�

pre-

�

Internal state

�
�

�
� �

� � � � � � � � � �

Claim: just write (monadic)

� � � �

.!

� � � � � instead of

� � � �
�

� � � � �

Overture — 07/18 – p.5/32

Why monads

Compare:

� ��� � ��� � let b = g(a) in f(b)

with

� �

.! � ��� � do { b <- g(a); f(b) }

Overture — 07/18 – p.6/32

Why monads

Compare:

� ��� � ��� � let b = g(a) in f(b)

with

� �

.! � ��� � do { b <- g(a); f(b) }

where types are, in the second case, as follows

�

� //

� �
�

� //

� �

Overture — 07/18 – p.6/32

Why monads

Compare:

� ��� � ��� � let b = g(a) in f(b)

with

� �

.! � ��� � do { b <- g(a); f(b) }

In detail:

�

� //

�
.! �

++� �

� �//

� � � � �
�

//

� �

�

� //

� �

Overture — 07/18 – p.6/32

Why monads

Compare:

� ��� � ��� � let b = g(a) in f(b)

with

� �

.! � ��� � do { b <- g(a); f(b) }

Example (list monad):

�

� //

�
.! �

++

� � �

�� � � //

� � � � �
�� � �� � //

� � �

�

� //

� � �

Overture — 07/18 – p.6/32

Standard definition

�

.! � ��� � g(a) »= f

where

class Monad m where
return :: a -> m a
(>>=) :: m a -> (a -> m b) -> m b
(>>) :: m a -> m b -> m b

fail :: String -> m a

Overture — 07/18 – p.7/32

Partiality and the Error monad

Which monad

�

? A popular choice for handling partiality is

datatype

data Error a = Err String | Ok a

that is, monad

instance Monad Error where

return b = Ok b

(Err e) >>= f = Err e

(Ok a) >>= f = f a

Overture — 07/18 – p.8/32

First experiment

“Monadify” normal functions,

� �

f

� �

a � Ok (f a)

and convert conditions and invariants to monadic partial
identities, eg.

� �

inv

� �

a � if (inv a)

then (Ok a)

else Err "Invariant violation"

(So

� ��� �� � �

:: a -> Error a while inv :: a ->

Bool)

Overture — 07/18 – p.9/32

Back to the real world

In this way, we get a very simple, “pipelined” approach to
composition

�

//

� �

pre- � � �

//

� � � � �

//

� �

inv-

� � �

//

� �

pre-

� � �

//

� � � � �

//

� �

inv-

� � �

//

where the arrows are Error-monadic — think of

�

.!

�

instead
of

�� �

— that is

do { pre-g a;

b <- g a;

inv-B b; pre-f b;

c <- f b;

inv-C c

}
Overture — 07/18 – p.10/32

Monadic invariant example

Invariant associated to a relational table t with schema s in a
RDB system:

inv (Rel s t) = do {
m <- mfoldS munion’ (Ok emptyPf) (nmap (id *-> valType) t)

‘otherwise_‘ "Tuple schemas are not mutually compatible" ;
check (relSchemaOk m) (Rel s t)

"At least one tuple type does not match relation schema" ;
check fdpOk (Rel s t)

"The key-property is not valid in the relation"
}

where
relSchemaOk m r = m <= (id *-> (valType . defaultV)) (schema r)
fdpOk (Rel s t) = fdp(nmap (tnest (getKeyAtts s)) t)

(Excerpt of Necco’s Haskell model of a relation in a RDB system.

Note the successively contextualized error messages interspersed

with the monadic code.)

Overture — 07/18 – p.11/32

Why this not enough

We are stuck to a single monad (Error) and a single
evaluation mode (fail)

We would like to be able to switch among

free fall — no checking performed whatsoever.

warn — when invariants and conditions are found
violated, a warning will be issued, but computation
proceeds as if nothing happened.

fail — invariant and conditions checked, and when found
violated a run-time error is forced immediately.

error — invariants and conditions are checked, and when
found violated an error or exception will be thrown.

Overture — 07/18 – p.12/32

Running example (VDM)

VDM model of stacks of odd integers — (partial) datatype

Stack = seq of int
inv s = forall a in set elems s & odd(a);

and (partial) functions

empty : Stack -> bool
empty(s) == s = [];

pop : Stack -> Stack
pop(s) == tl s
pre not empty(s);

top : Stack -> int
top(s) == hd s
pre not empty(s);

push : int * Stack -> Stack
push(p,s) == [p] ˆ s
pre odd(p) ;

Overture — 07/18 – p.13/32

Constrained datatypes (Haskell)

We go back to invariants as Boolean functions and define class

class CData a where
inv :: a -> Bool
inv a = True -- default

so that invariants propagate dynamically, eg. listwise

instance CData a => CData [a] where
inv = all inv

eg. pairwise

instance (CData a, CData b) => CData (a,b) where
inv (a,b) = (inv a) && (inv b)

etc
Overture — 07/18 – p.14/32

Semantics of VDM type Stack

��

Stack = seq of int
inv s = forall a in set elems s & odd(a);

��

�

�
�������

������	

newtype Stack = Stack { theStack :: [Int] }

instance CData Stack where
inv s = all odd (theStack s)

In general, VDM partial types such as Stack are mapped
into CData instances.

What about (partial) functionality?

Overture — 07/18 – p.15/32

CamilaMonad

Define CamilaMonad, a subclass of Monad

class Monad m => CamilaMonad m where
-- | Check precondition
pre :: Bool -> m ()
-- | Check postcondition
post :: Bool -> m ()
-- | Check inv before returning data in monad
returnInv :: CData a => a -> m a

which cares about pre-/post-conditions and invariants.

Overture — 07/18 – p.16/32

Monadic VDM translation

Example, showing genericity of the translation — for any
CamilaMonad m,

�
�

�
�

top : Stack -> int
top(s) == hd s
pre not empty(s);

�
�

�
� �

�
��
��
��
��
��
�

��
��
��
��
��
��
�

top :: CamilaMonad m =>
Stack -> m Int

top s =
do {

pre (not (empty s));
return
(head (theStack s))

};

Note the difference: our first approach was bound to

top :: Stack -> Error Int

How is this to work?

Overture — 07/18 – p.17/32

CamilaT monad transformer

We need a family of monads, one per evaluation mode. So, we
define

data CamilaT mode m a =
CamilaT {runCamilaT :: m a}

NB:

CamilaT mode m is isomorphic to m:

instance Monad m => Monad (CamilaT mode m) where
return = CamilaT . return
ma >>= f = CamilaT (runCamilaT ma >>=

runCamilaT . f)

CamilaT will add checking effects to a given base monad,
depending on the phantom mode argument (type-indexed
family of monads);

Overture — 07/18 – p.18/32

Free fall mode
Define type

data FreeFall

and then instantiate CamilaMonad as follows:

instance Monad m =>
CamilaMonad (CamilaT FreeFall m) where
pre p = return ()
post p = return ()
returnInv = return

Thus

pre-/post-conditions p are simply ignored

the invariant-aware return simply does not check it

Overture — 07/18 – p.19/32

Example (free fall mode)

Taking top of an empty stack

testTopEmptyStack :: CamilaMonad m => m Int
testTopEmptyStack = do {

s <- initStack ; -- create empty stack
n <- top s ;
return n
}

In free-fall mode we get

> runCamilaT $ freeFall testTopEmptyStack
*** Exception: Prelude.head: empty list

as expected.

Overture — 07/18 – p.20/32

Fail mode

Define type

data Fail

and then instantiate CamilaMonad as follows:

instance Monad m => CamilaMonad (CamilaT Fail m) where
pre p = if p then return ()

else fail "Pre-condition violation"
post p = if p then return ()

else fail "Post-condition violation"
returnInv a = if (inv a) then return a

else fail "Invariant violation"

Thus, when violations are detected, the standard fail function is

used to force an immediate fatal error.
Overture — 07/18 – p.21/32

Running example (fail mode)

Taking top of an empty stack in fail mode will yield

> runCamilaT $ fatal testTopEmptyStack

*** Exception: Pre-condition violation

as expected.

Overture — 07/18 – p.22/32

Warn mode

Define type
data Warn

To enable reporting, we need a monad with writing capabilities,
eg the standard IO monad:

instance MonadIO m => CamilaMonad (CamilaT Warn m) where
pre p = unless p $ liftIO $ putErr "Pre-condition violation"
post p = unless p $ liftIO $ putErr "Post-condition violation"
returnInv a = do

unless (inv a) $ liftIO $ putErr "Invariant violation"
return a

instance MonadIO m => MonadIO (CamilaT mode m) where
liftIO = CamilaT . liftIO

(The unless combinator runs its monadic argument conditionally

on its boolean argument.)
Overture — 07/18 – p.23/32

Running example (warn mode)

Taking top of an empty stack in warn mode will yield

> runCamilaT $ warn testTopEmptyStack

Pre-condition violation

*** Exception: Prelude.head: empty list

It signals out Pre-condition violation but carries on,

later to crash as in the free-fall mode.

Overture — 07/18 – p.24/32

Running example (error mode)

(See paper for details on the CamilaMonad instance for this
mode)

Taking top of an empty stack in error mode will yield

> runCamilaT $ errorMode testTopEmptyStack
*** Exception: user error Pre-condition violation

So, an exception is raised, but the text user error in the mes-

sage indicates that this exception is actually catchable, and not

necessarily fatal.

Overture — 07/18 – p.25/32

Fatal versus error modes

Difference between fail mode and error mode becomes clear
when we try to catch the generated exceptions: compare

> (runCamilaT $ fatal testTopEmptyStack)
’catchError’ _ -> putStrLn "CAUGHT" >> return 42

*** Exception: Pre-condition violation

with

> (runCamilaT $ errorMode testTopEmptyStack)
’catchError’ _ -> putStrLn "CAUGHT" >> return 42

CAUGHT

Thus, exceptions that occur in error mode can be caught, higher

in the call chain, while in fail mode the exception always gets prop-

agated to the top level.
Overture — 07/18 – p.26/32

Details on elegance of solution

Clever use of the identity function’s polymorphism:

freeFall :: CamilaT FreeFall m a -> CamilaT FreeFall m a
freeFall = id

warn :: CamilaT Warn m a -> CamilaT Warn m a
warn = id

etc (= let the type system do work — type level

programming !)

Overture — 07/18 – p.27/32

VDM Stack compiled to Haskell

newtype Stack = Stack { theStack :: [Int] }
instance CData Stack where inv s = all odd (theStack s)

empty :: Stack -> Bool
empty s = theStack s == []

push :: CamilaMonad m => Int -> Stack -> m Stack
push n s = do {

pre (odd n) ;
returnInv $ Stack (n : theStack s)
}

pop :: CamilaMonad m => Stack -> m Stack
pop s = do {

pre (not $ empty s) ;
returnInv $ Stack $ tail $ theStack s
}

top :: CamilaMonad m => Stack -> m Int
top s = do {

pre (not $ empty s) ;
return (head $ theStack s)
}

Overture — 07/18 – p.28/32

Summary and current work

Formal model animation has to do with rapid-prototyping
(= early testing).

Animation prepares model for proof obligation discharge
(proofs become free of stupid errors)

“Animatographer” (=interpreter) should be as flexible as
possible — thus our evaluation modes (new ones can be
invented, cf. eg. error logging)

Different modes can be used (simultaneously) for different
parts of the same model

Example — switch component testing to free-fall as soon
as proof obligations have been discharged for such a
component, while keeping protecting the others’ animation

Warn mode suited for testing via fault-injection

Overture — 07/18 – p.29/32

Closely related work

VDM conversion into Gofer (Paul Mukherjee,
FME’97) — comprehensive translation strategy is
based on the (fixed)state and error monads

VDMTools (IFAD) — debugging and dynamic
checking of invariants and pre-/post-conditions can
be turned on and off individually.

VDM conversion into Lazy ML (Borba & Meira, JSS
1993) — monads are not used; invariants are
checked at input parameter passing time (rather than
at value return time)

Irish VDM (see A. Butterfield’s home page) —
Haskell libraries, including QuickCheck support;
concern for proof obligations

Overture — 07/18 – p.30/32

Other related work

Programatica — This is a system for the development of
high-confidence software systems. Assertions are
type-checked to ensure a base level of consistency with
executable portions of the program and annotated with
certificates that provide evidence of validity.

JCL (Jakarta Commons Logging) — The Jakarta project
of the Apache Software Foundation offers logging
support in the form of a LogFactory class and a Log
interface wich offers methods like fatal, error, and warn to
emit messages to consoles and/or log files.

Overture — 07/18 – p.31/32

Relevance for Overture

Software architecture above all — with Haskell’s help

Our monadic model for VDM property checking provides
an answer to how such checking may be understood
semantically.

When compiling to Java, for instance, our monadic model
so far suggests to consider using class parameters
(possibly using a model of monads in Java?)

We hope the outcome of our experiments may lead to
inspiration for future developments in projects such as
Overture.

Haskell versus Java: Scala (F + OO) ?

Overture — 07/18 – p.32/32

	CAMILA Revival
	CAMILA Revival
	VDM versus Haskell
	Why Haskell?
	Why monads
	Standard definition
	Partiality and the 	exttt {yellow Error} monad
	First experiment
	Back to the real world
	 Monadic invariant example
	Why this not enough
	 Running example (VDM)

	Constrained datatypes (Haskell)

	Semantics of 	extbf { VDM }type Stack
	CamilaMonad
	 Monadic 	extbf { VDM }translation
	CamilaT monad transformer
	Free fall mode
	Example (free fall mode)
	Fail mode
	Running example (fail mode)
	Warn mode
	Running example (warn mode)
	Running example (error mode)
	Fatal versus error modes
	Details on elegance of solution
	VDM Stack compiled to Haskell
	Summary and current work
	Closely related work
	Other related work
	Relevance for Overture

