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Abstract

The work described in this report is part of PPC-VM project1 (Portable Parallel Computing
based on Virtual Machines). The PPC-VM project aims to build an environment to support
the development and execution of parallel applications that efficiently execute on a wide
range of computing platforms, based on virtual machines.

This work contributes to PPC-VM project with a parallel computing environment, which aims
to simplify the implementation of parallel applications and to test the paradigms/methodologies
developed within the PPC-VM project.

The parallel computing environment uses the Java programming language and it provides
two components: a skeleton catalog implemented as an abstract class library and an au-
tomatic object distribution platform, based on source code generation. The former helps
programmers creating parallel applications, while the latter transparently distributes objects
in a parallel distributed environment.

Application area: Parallel computing

Keywords: parallel computing, parallel programming, automatic object distribution, skele-
tons, Java
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Resumo

O trabalho descrito neste relatório está integrado no projecto PPC-VM 2 (Portable Parallel
Computing based on Virtual Machines). O projecto PPC-VM tem como objectivo a constru-
ção de um ambiente que suporte o desenvolvimento e a execução de aplicações paralelas,
de forma eficiente numa vasta gama de sistemas baseados em máquinas virtuais.

Este trabalho contribui para o projecto PPC-VM com um ambiente de computação para-
lela que pretende simplificar a implementação de aplicações paralelas e testar paradig-
mas/metodologias desenvolvidas no contexto do projecto.

O ambiente de computação paralela desenvolvido suporta aplicações em Java e fornece
dois componentes: um catálogo de esqueletos (skeletons) que é implementado como um
conjunto de classes abstractas, e uma plataforma de apoio à execução que realiza a dis-
tribuição automática de objectos, baseada na geração de código-fonte. Enquanto que a
primeira componente é utilizada para ajuda na criação de aplicações paralelas, a segunda
é utilizada para distribuir transparentemente objectos num ambiente computacional paralelo
ou distribuído.

Área de Aplicação: Computação paralela

Palavras-Chave: computação paralela, programação paralela, distribuição automática de
objectos, esqueletos, Java

2POSI/CHS/47158/2002
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1. Introduction

1.1. Context

The work presented in this report was integrated within the PPC-VM3 (Portable Parallel Com-
puting based on Virtual Machines) project (POSI/CHS/47158/2002), and developed at the
Grupo de Engenharia de Computadores - Departamento de Informática under the supervi-
sion of Dr. João Luís Sobral and Professor Alberto José Proença.

The PPC-VM project aims to build an environment to support the development and exe-
cution of parallel applications that efficiently execute on a wide range of shared computing
platforms, based on virtual machines (in particular, on the Java virtual machine). A virtual
machine is a piece of computer software that isolates the user application from the computing
platform. Any application compiled for a virtual machine can be executed on any computer
platform, instead of having to produce separate binary versions of the application for each
computer and operating system. The application is run on the computer either by interpreting
the code (the original or an intermediate level) or through Just In Time (JIT) compilation.

The PPC-VM project description, taken from the submission form, is as follows:

"PPC-VM project aims the research of methodologies and tools to help the de-
velopment of scalable parallel applications that can take advantage of a large
number and variety of shared computer resources. The main focus is on the de-
velopment of methodologies to support efficient fine-grained parallelism (object
oriented, specified by fine-grained active objects), whose grain-size can be dy-
namically adjusted to efficiently use the available resources, matching the avail-
able computing and communication bandwidth. This includes the dynamic de-
termination of the number of computer resources that can be efficiently used by
the application on particular running conditions. The research will follow a virtual
machine based approach, since it provides application code compatibility, sup-
porting dynamically downloaded code and can transparently provide additional
services. Additionally, virtual machines are a strong trend in the programming
community.

The key research issues on this project aim to provide:

• High-level specification of scalable parallel applications, supporting fine-
grained tasks based on active objects that can be efficiently executed on
a wide range of computing resources, including reconfigurable hardware.
This includes the efficient mapping of high level scalable parallel programs
to virtual machine level;

3http://gec.di.uminho.pt/ppc-vm
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• Parallelism extraction from source or intermediate code, compile time es-
timation of object granularity information and inclusion of inter-objects de-
pendencies information into object assemblies; the obtained information in-
creases application parallelism and improves the efficiency of the run-time
decision making.

• Load distribution and granularity control as a virtual machine service, pro-
viding transparent and efficient use of a wide range of shared and hetero-
geneous computing resources.

The resulting methodologies are implemented either by extending a virtual ma-
chine or by building a new layer on top of an existing virtual machine. This imple-
mentation will provide several new services, such as dynamic load distribution
and granularity control, and tools that map high-level parallel applications to this
environment. "

This work contributes to PPC-VM project with the specification and implementation of a
simple parallel computing environment, which is meant to simplify the design and the imple-
mentation of parallel applications. The next section presents this environment, explaining
the interaction between its components and introducing some key concepts that will be men-
tioned throughout the following chapters.

1.2. An integrated approach to parallel computing using Java

1.2.1. Specification of a parallel computing environment

The parallel computing environment described in this work relies on two key concepts: a
skeleton catalog and automatic runtime object distribution based on source code gen-
eration.

The skeleton catalog is a collection of code templates implemented as an abstract class
library. The catalog is supplied to the programmer to help him/her to create Java code for
a parallel/distributed computing platform. Skeletons are abstractions modelling a common,
reusable parallelism exploitation pattern [ADT03, Col04]. A skeleton may also be seen as a
high order construct (i.e. parameterized by other pieces of code) which defines a particular
parallel behaviour.

Distribution of objects among computing nodes (either in a distributed environment or in a
parallel cluster) can be statically performed, if it is performed at compile time, or dynamically,
if there is a runtime system that decides where to create the objects; it can also be explicitly
declared by the user, or it may occur without human intervention. To implement an automatic
runtime object distribution, several alternative ways can be used; some require extensions

2



to the programming language, others may simply achieve it through a tool that generates
adequate source code.

The parallel environment provides a skeleton-based framework, which can be used to struc-
ture parallel applications. A framework is a support structure in which another software
project can be organized and developed. Programmers only have to opt for the appropriate
skeleton and define the parameters (i.e. pieces of domain-specific code).

An application developed according to this skeleton-based framework is ready to be trans-
parently distributed among the available resources, using another component from the envi-
ronment: a source code generator.

This environment is different from other research environments in the way that it uses dif-
ferent and independent components for distinct tasks; it uses the skeleton-based framework
to structure parallel applications and it uses the source code generator to support dynamic
objects distribution.

The independence between these two components brings some advantages:

• within the skeleton-based framework, programmers can develop a structured applica-
tion and run it in a non-distributed environment; this allows the programmer to test the
application before running it in a distributed environment;

• programmers can use the source code generator with common applications that are
not structured using the skeleton-based framework;

• programmers can replace the skeleton-based framework by other frameworks or li-
braries and maintain the source code generation; this allows the use of alternative
ways to structure parallel applications.

1.2.2. Implementation

The main contribution of this work is a Java implementation of the parallel computing envi-
ronment described above.

The skeleton catalog was implemented as a set of Java abstract classes. To write par-
allel applications, programmers must express their structure using the available skeletons
and define the skeletons parameters, refining the desired abstract classes and writing the
domain-specific code.

Object distribution is achieved through a tool that transforms the original Java source code
and introduces new support classes. Objects are distributed at runtime. Thus, the environ-
ment provides an automatic runtime object distribution, based on source code generation.

3



This work also contributes with an analysis and description of the Java Grande Forum4 paral-
lel algorithms, stressing distribution issues. These algorithms are useful to test and validate
the environment.

Issues

The first priority of the work described in this report was to allow automatic runtime object
distribution. The first approach to generate code did not concern about details like static
variables, direct access to instance variables and class inheritance. After the first approach
to automatic runtime object distribution, the priority was to simplify the programmer’s task.
We decided to explore the skeleton concept and we built a skeleton-based framework based
on class inheritance.

Full implementation of the parallel computing environment required the application of the
object distribution tools to structured code with the skeleton-based framework. This work
addressed a partial implementation of the environnment and associated tests and evaluation,
leaving for future work the remaining implementation.

1.3. Content overview

Chapter 2 describes an approach to distribute objects and a corresponding Java implemen-
tation. It shows some examples, presents some limitations and briefly describes a C# imple-
mentation.

Chapter 3 describes a skeleton-based Java framework built to help programmers to structure
their parallel applications. It also introduces the skeletal approach to parallel programming
by describing what a skeleton is and by presenting some common skeletons.

Chapter 4 presents an evaluation methodology complemented with a comparative study of
alternative implementation strategies to distribute objects and a comparison between two
skeletons from the skeleton-based framework.

Chapter 5 concludes this report, with a discussion on the obtained results and some conclu-
sions about the work done. It also suggests some improvements to the work.

Appendix A documents the Java Grande Forum parallel algorithms.

Appendix B presents documents related with the automatic object distribution implementa-
tion: a brief analysis of existing parser generators (and related tools) and the description of
the frontend script used to simplify the source code transformation and the automatic object
distribution.

4http://www.epcc.ed.ac.uk/javagrande/javag.html
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2. Code generation for distributed computing

2.1. An approach to distribute objects

Objects interact with each other when a service is requested - a client object, c1, calls a
method from a server object, s1 - and/or a reply is given - a method in the server s1 returns a
value to c1. Figure 1 illustrates this interaction; an object may also place requests on several
other objects, as shown in Figure 2.

Figure 1: Object c1 requests service to object s1

Figure 2: Object c1 requests service to objects s1, s2, ..., sn

In a distributed environment, where objects may be placed across several computers, or
computing nodes in a cluster, a mechanism is required to support transparent distribution
of objects and their corresponding communication channels. A programmer expects that
objects will be automatically distributed without his/her direct intervention, assuming this job
to be part of the operating execution environment. The work developed here had this in mind
and considered it as a goal.

To support transparent and efficient object distribution, additional concepts need to be pre-
sented:

• a client object always expect the server object to be in the same process, when it calls
a method; to provide this facility when the server object is remotely placed, the server
object in the same process is replaced by another that mimics its interface and acts as
it was the server object; we call this the proxy object;
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• the server object needs to be remotely created - we call it the implementation object
- and an entity in the remote node must be able to create these new objects, when
requested to do so; we call this entity an objects’ factory;

• the location of objects in remote nodes may be statically defined at compile time, or
may be dynamically placed in run time; this tuning requires an entity to dynamically
decide where to place the remote object; we call this load manager in our current
project the cluster manager. Figure 3 illustrates how these concepts interact.

One critical issue in efficient object distribution, where several computing nodes are compet-
ing candidates to host the implementation object, is the strategy to make a decision where to
place the implementation object. This decision may be complex and dependent from many
parameters: memory usage, CPU usage, number of processes, etc.

Figure 3: Automatic object distribution: interaction between the components

In this distributed environment, s1 object is replaced by a proxy object (p1) and c1 calls the
proxy m method. The decision where to place the implementation object is taken when the
proxy object is created. This decision is taken in two steps:

• the proxy asks the cluster manager what is the optimum host to create a remote object
(getOptimumHost());

• the proxy places a request to the factory at that host (in this example it is Node 0) to
create a remote object (createNewS1()); the factory returns a reference to the new
remote object (obj).

6



Once the remote objects are created, a service request follows these steps:

• client c1 calls the proxy method m();

• the proxy calls a method on the new remote object, using the reference returned by
the factory (obj.m());

• the remote object execute method m and returns a value to the proxy;

• the proxy returns the value to the client object c1.

2.2. A Java implementation

To implement an automatic distribution of objects, several alternative ways can be used;
some require extensions to the programming language, others may simply achieve it through
support classes. The latter was the adopted approach to implement automatic object dis-
tribution, which supports the execution of Java code in this project. A parser transforms
the original source code and introduces new classes to represent proxies and the objects’
factories.

2.2.1. Parser generator

Two approaches were followed to interpret and transform Java source code: either to adopt
an existing parser, or to create a new one from scratch. The former requires a careful
analysis of available tools, while the latter may lead to faster implementations. We have
chosen the first one because it reduces substantially the development time of this stage.

Appendix B.1 contains a short description of the performed analysis to several parser gener-
ators. We opted for the JParse library, based on ANTLR, since it already has a Java grammar
which produces an abstract syntax tree (AST). This feature is relevant to help to reduce the
development time and to simplify the code generation.

2.2.2. Code generation

The chosen tool to transform source code creates an AST and it has a tree parser to traverse
that AST. Thus, the code generation strategy is as follows:

• S class source code is parsed and an AST representing that class is created;

• the created AST is traversed several times and in each of these traverses:

7



Figure 4: Class generation strategy

– a new class with the same name and with the same interface is created (proxy);
the generated proxy constructors create a remote object that is used by all the
other methods to redirect the method calls;

– a new interface file named IS is created; this interface represents the original
class public methods;

– a new class named SImpl is created (implementation); this class implements
the interface IS, i.e., it implements the original methods’ code; this class is a
subclass of RemoteObject, which means that its instances are remote objects;

• a class named PPCFactory (factory) and its interface are created; this class defines
methods that create implementation objects (they are generated from the original con-
structors); this class is a subclass of RemoteObject.

This strategy is illustrated in figure 4.

Besides the generated classes, there is a PPCClusterManager class, which takes the deci-
sions where to create the remote objects: the current prototype uses a round-robin strategy.

The described approach depends on remote method invocations and on the definition of
remote objects. The Java language offers the Java Remote Method Invocation (Java RMI)
mechanism, which enables the programmer to invoke a method on a remote object. There
are two popular forms of RMI: the pure Java RMI and RMI-IIOP (RMI over the Internet Inter-
ORB Protocol). The difference between the two is that RMI-IIOP is compatible with CORBA,
since it uses the IIOP protocol of CORBA as the underlying protocol for RMI communication.

The generated code is based on the RMI-IIOP form.

8



Remote Method Invocation (RMI)

There are three processes involved in a remote method invocation:

• a client, which invokes the remote method;

• a server, which owns the remote method;

• a name service, which allows to register remote objects with a name and returns ref-
erences to remote objects; since both the client and the server may reside on different
address spaces, a mechanism is required to connect them; the name service provides
this connection.

The steps described in page 7 omit the queries to the name service. However, the name
service is used to get the references to remote factories, which are registered with the host
name where they are running.

Any object can be passed as an argument or returned as a value to or from a remote method
as long as it is a primitive data type, a remote object or a serializable object (if it implements
the interface java.io.Serializable). One critical issue in efficient object distribution is
whether an object is passed by reference or by value. Using RMI, arguments and return
values are passed as follows:

• remote objects are passed by reference. A remote object reference is a stub, which
is a client-side proxy that implements the complete set of remote interfaces that the
remote object implements.

• local objects are passed by value (a copy of the object), using object serialization. By
default all fields are copied, except those that are marked static or transient.

Another important issue is that RMI only supports synchronous method invocations. Asyn-
chronous method invocations must be explicitly programmed, using threads.

Currently, the PPC-VM project is evaluating an efficient RMI for Java called KaRMI5, which
is part of the JavaParty project.

KaRMI features are described as follows:

"KaRMI is a fast drop-in replacement for the Java remote method invocation
package (RMI). It is based on an efficient object serialization mechanism called
uka.transport that replaces regular Java serialization from the java.io package.
KaRMI and uka.transport are implemented completely in Java without native

5http://www.ipd.uka.de/JavaParty/KaRMI/index.html
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code. KaRMI also supports non-TCP/IP communication networks such as Myrinet/GM
and Myrinet/ParaStation. It can also be used in clusters interconnected with het-
erogeneous communication technology."

2.2.3. Examples

Code 1 shows a simple example that creates several instances and calls their methods.

Code 1 Client class
public class Client {

public static void main(String args[]) {
for(int i=0; i<10; i++) {

Server s = new Server();
s.method1(); // calls method1
s.method2(5); // calls method2 with argument 5

}
}

}

A class Server is defined in Code 2: both methods will print the host name where the
instances were created.

Running main method from Client class in host plutao.di.uminho.pt we get the output
illustrated in Output 1.

All instances were created in the same host, as Output 1 illustrates. Using the script pre-
sented in appendix B.2, we can distribute the instances among the nodes of a cluster. First
we need to generate the support code and transform the Server class (using pre option).
Then we need to generate the RMI stubs (using the rmic option). We use the start option
to start the factories, the name server and the object manager. The nodes where factories
are and some other information are referenced in a configuration file.

Output 2 shows the script in action.

We can run the main method from Client using the flags option. This option will inform
the program where is the name server and the libraries it needs to run. Output 3 illustrates
the client main method execution, using 5 nodes (pe2, pe3, pe4, pe10, pe12). The load
distribution policy is round-robin and all the instances were distributed among the available
nodes.

2.2.4. Limitations

The code generator still has some limitations, mostly due to some initial requirements. How-
ever, these limitations are being overcome, as presented below.
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Code 2 Server class
public class Server {

int number;

public Server() {
this.number = 0;

}

public Server(int a) {
this.number = a;

}

public void method1() {
try {

java.net.InetAddress host =
java.net.InetAddress.getLocalHost();

String hostname = host.getHostName();
System.out.println(

"Method1 was called in host " + hostname);
} catch (Exception e) {}

}

public void method2(int a) {
try {

java.net.InetAddress host =
java.net.InetAddress.getLocalHost();

String hostname = host.getHostName();
System.out.println(

"Method2 was called with argument: " +
a +
" in host " + hostname);

} catch (Exception e) {}
}

}

Output 1 Example in the same node
[joao@plutao demo]$ java Client
Method1 was called in host plutao.di.uminho.pt
Method2 was called with argument: 5 in host plutao.di.uminho.pt
Method1 was called in host plutao.di.uminho.pt
Method2 was called with argument: 5 in host plutao.di.uminho.pt
Method1 was called in host plutao.di.uminho.pt
Method2 was called with argument: 5 in host plutao.di.uminho.pt
Method1 was called in host plutao.di.uminho.pt
Method2 was called with argument: 5 in host plutao.di.uminho.pt
Method1 was called in host plutao.di.uminho.pt
Method2 was called with argument: 5 in host plutao.di.uminho.pt
Method1 was called in host plutao.di.uminho.pt
Method2 was called with argument: 5 in host plutao.di.uminho.pt
Method1 was called in host plutao.di.uminho.pt
Method2 was called with argument: 5 in host plutao.di.uminho.pt
Method1 was called in host plutao.di.uminho.pt
Method2 was called with argument: 5 in host plutao.di.uminho.pt
Method1 was called in host plutao.di.uminho.pt
Method2 was called with argument: 5 in host plutao.di.uminho.pt
Method1 was called in host plutao.di.uminho.pt
Method2 was called with argument: 5 in host plutao.di.uminho.pt
[joao@plutao demo]$
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Output 2 Script used
[joao@plutao demo]$ ppcvm pre Server.java
Creating proxy file: Server.java
Creating implementation: ServerImpl.java
Creating interface: IServer.java
Creating factory: PPCFactory.java
Creating factory interface: IPPCFactory.java

[ OK ]
[joao@plutao demo]$ ppcvm rmic
Running rmic in file: PPCFactory
Running rmic in file: ServerImpl [ OK ]

[ OK ]
[joao@plutao demo]$ ppcvm compile *.java
Compiling files: [ OK ]
[joao@plutao demo]$

Output 3 Example over multiple nodes
[joao@plutao demo]$ java ‘ppcvm flags‘ Client
Method1 was called in host pe2.gecinv.di.uminho.pt
Method2 was called with argument: 5 in host pe2.gecinv.di.uminho.pt
Method1 was called in host pe3.gecinv.di.uminho.pt
Method2 was called with argument: 5 in host pe3.gecinv.di.uminho.pt
Method1 was called in host pe4.gecinv.di.uminho.pt
Method2 was called with argument: 5 in host pe4.gecinv.di.uminho.pt
Method1 was called in host pe10.gecinv.di.uminho.pt
Method2 was called with argument: 5 in host pe10.gecinv.di.uminho.pt
Method1 was called in host pe12.gecinv.di.uminho.pt
Method2 was called with argument: 5 in host pe12.gecinv.di.uminho.pt
Method1 was called in host pe2.gecinv.di.uminho.pt
Method2 was called with argument: 5 in host pe2.gecinv.di.uminho.pt
Method1 was called in host pe3.gecinv.di.uminho.pt
Method2 was called with argument: 5 in host pe3.gecinv.di.uminho.pt
Method1 was called in host pe4.gecinv.di.uminho.pt
Method2 was called with argument: 5 in host pe4.gecinv.di.uminho.pt
Method1 was called in host pe10.gecinv.di.uminho.pt
Method2 was called with argument: 5 in host pe10.gecinv.di.uminho.pt
Method1 was called in host pe12.gecinv.di.uminho.pt
Method2 was called with argument: 5 in host pe12.gecinv.di.uminho.pt
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Direct access to instance variables

Direct access to instance variables is not a good practice; however, some applications are
written this way. The generated proxy does not have any instance variable; if some other
class tries to directly access any instance variable, an error will occur.

The solution is to use accessors and mutators to read and to change instance variables; this
way, the proxy will redirect the method calls to the implementation object.

Static variables

Current proxy generation not include any static or instance variables; if the client object tries
to access a static variable, an error will occur.

Another problem arises if the server class has static variables and uses other classes, which
try to access them: since the auxiliary classes are never changed, they will try to access the
proxy’s static variables. For instance, it is perfectly possible to have a class Server with a
static variable named var, which uses an instance of class Aux that tries to access Server.var.
Transforming class Server will produce the proxy Server (without static variables) and a new
class ServerImpl (with the static variables). Aux class will not be changed and Server.var will
result in an error.

The first thing we might think of is to change the call Server.var to ServerImpl.var. The
problem is that if Aux object changes the ServerImpl.var value, this modification must be
replicated to all the other ServerImpl objects that may be distributed among several nodes.

We have not found yet a final solution, but this problem will be solved in the future.

Inheritance

Class inheritance is not currently supported. If a class Sub extends another class Super,
and if Sub does not redefine all Super methods, then the generated proxy will not direct the
inherited and unredefined methods to the implementation object.

One way to overcome this problem is to aggregate all methods of all superclasses in the
proxy; this requires to parse all superclasses in the pre-processing phase.

Note: if the used RMI form supported inheritance, the problem would be automatically over-
come.
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2.3. A C# implementation

There is also a C# implementation of the approach described in this chapter. It is called
ParC# and it was developed on top of the Mono project6. The experiments with this im-
plementation show that Mono C# Remoting presents a low latency, similar to highly opti-
mized Java RMI implementations [NPH99]. However, the same experiments have shown
that Mono’s thread scheduling policy should be improved.

My contribution for this platform was to evaluate its performance; I tested it with a raytrac-
ing algorithm (ported from Java to C#) and compared the execution times with a Java RMI
version. The full performance evaluation (and more details) is described in a scientific com-
munication we presented in an international conference [FS05].

6http://www.mono-project.com

14

http://www.mono-project.com


3. A Skeleton-based Java Framework

This chapter describes a skeleton-based Java framework built to help programmers to struc-
ture their parallel applications. It also introduces the skeletal approach to parallel program-
ming by describing what a skeleton is and by presenting some common skeletons.

3.1. Parallel Skeletons

Many parallel algorithms share the same generic patterns of computation and interaction.
Skeletal programming proposes that such patterns be abstracted and provided as a pro-
grammer’s toolkit. We call these abstractions algorithmical skeletons, parallel skeletons
or simply skeletons.

We define parallel skeletons as abstractions modelling a common, reusable parallelism ex-
ploitation pattern [ADT03]. A skeleton may also be seen as a high order construct (i.e.
parameterized by other pieces of code and other parameters) which defines a particular
parallel behaviour.

Skeletons provide an incomplete structure that can be parameterized by the number of pro-
cessors, domain-specific code or data distribution; programmers can focus on the computa-
tional side of their algorithms rather than the control of the parallelism. Since the lower level
operations are hidden, programmers’ productivity increases.

Since skeletons provide simple interfaces to programmers, skeleton-based programs are
smaller, easier to maintain, more understandable and less prone to error. These properties
together with the fact that most parallel applications share the same interaction patterns,
make skeletons a potential tool for code reusability.

Skeletons also provide a good way to code portability, because the same skeleton can be
used for different architectures: it is only necessary to change the implementation of the
skeleton in order to make a skeleton-based program work.

Usually, there is a trade-off between performance and reusability and portability. However,
the skeletal approach provides programmers an easy way to optimise the computational part
of their algorithms. Besides, skeletons may be carefully optimized to run more efficiently in
the underlying architecture.

3.2. Common skeletons

Generally, skeletons can be divided in two main classes: data parallel skeletons and task
parallel skeletons. Data parallel skeletons are based on a distributed data structure. Basi-
cally, the data is distributed among several processors and, usually, each processor executes
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the same code on the different pieces of data. Task parallel skeletons are based on the dis-
tribution of the execution of independent tasks on several processors.

This section presents some common skeletons which capture the structure of most of the
typical parallel applications.

3.2.1. Farm

The Farm skeleton is a data parallel skeleton and it consists of a master entity and multiple
workers. The master decomposes the input data in smaller independent data pieces and
send them to each worker. Workers process the data and send their result to the master,
which merges them to get the final result.

Farm skeleton may use either a static load-distribution or a dynamic load-distribution. In the
first case, all the data is distributed in the beginning of the computation. This strategy is
suitable for homogeneous environments and for regular problems. The other approach is
better to unbalanced problems or heterogeneous environments.

There is an interesting Farm skeleton variation, which uses a dynamic load-distribution,
where data is sent only when workers demand it; this form is usually called Dynamic Farm or
Farm-on-Demand. This variation is very useful for heterogeneous environments and when
there is a large number of data pieces, since workers will be more efficiently used. However,
communication costs are larger and performance may decrease.

A single master can be a bottleneck for a large number of workers, but skeletons can be
tuned or changed to handle these limitations; a Farm skeleton can, for instance, use several
masters to improve performance.

Figure 5 illustrates the Farm skeleton.

3.2.2. Pipeline

The Pipeline skeleton is a task parallel skeleton and it corresponds to the well known func-
tional composition. The tasks of the algorithm are serially decomposed and each processor
executes a task. Each processor/task is usually called a stage.

In most cases, input data are sent to the first stage and then flow between the adjacent
stages of the pipeline. The computation ends when the last stage ends processing. However,
the initial input data can also be decomposed in smaller blocks; then, each block is sent to the
pipeline. This alternative uses more efficiently the workers, since the pipeline can process
different data blocks at the same time.

Figure 6 illustrates the Pipeline skeleton.
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Master

Worker

Worker

partial result

partial result

data piece

data piece

input data

Figure 5: Farm Skeleton

Stage 
1

Stage 
2

Stage 
3

input data output data

Figure 6: Pipeline Skeleton

3.2.3. Heartbeat

The Heartbeat skeleton models a very common pattern present in many parallel algorithms:
data are spread among workers, each is responsible for updating a particular part and new
data values depend on values held by other workers. It is called Heartbeat because the
actions of each worker are like the beating of a heart: expand, sending information out; con-
tract, gathering new information; then process the information and repeat [And99]. Heartbeat
is appropriate for iterative algorithms and it is a communication-intensive skeleton.

Figure 7 illustrates the Heartbeat skeleton.
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data

Figure 7: Heartbeat Skeleton

3.2.4. Divide-and-Conquer

The Divide-and-Conquer skeleton corresponds to the well known sequential algorithm with
the same name. Basically, a problem is divided in subproblems and each of these subprob-
lems is solved independently. Subproblems are independent from each other and they can
be solved in different processors. The results of each subproblem are combined to get the
final result.

Figure 8 illustrates the Divide-and-Conquer skeleton.

3.3. Skeletons composition

Conceptually, skeletons may be composed [DkGTY95,BC05] in order to get different interac-
tion patterns. If a worker of a Farm can be expressed as a Heartbeat skeleton, then it seems
a good idea to write it using the Heartbeat skeleton, because it will be more structured.

3.4. JaSkel: a skeleton-based Java framework

Skeletons can be provided to the programmer either as language constructs or as libraries.
JaSkel provides parallel skeletons as a set of Java abstract classes.
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Figure 8: Divide-and-Conquer Skeleton

The only Java libraries for parallel programming based on skeletons that were found were
Lithium [ADT03] and muskel [Dan05]. They are developed by the same research team and,
according to muskel webpage7, Lithium is no long being maintained:

"muskel is a full Java library allowing users to run task parallel computations
onto networks/clusters of machines. It runs with Java 1.4 or higher. muskel is a
core version of Lithium, which is no more maintained."

The main differences between JaSkel and these two libraries are:

• JaSkel only provides a way to structure parallel applications; muskel and Lithium im-
plement communication and distribution code;

• JaSkel explores class hierarchy and inheritance; muskel and Lithium are based on
object composition.

7http://www.di.unipi.it/~marcod/muskel
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The current JaSkel prototype provides skeletons for Farm and Pipeline parallel coding. Later
versions will be extended to support other parallel skeletons or to improve current skeletons.

To write a parallel application using JaSkel, a programmer must perform the following steps:

• to structure the parallel program and to express it using the available skeletons;

• to refine the supplied abstract classes and write the domain-specific code used as
skeleton parameters;

• to write the code that starts the skeleton, defining other relevant parameters (the num-
ber of processors, the load distribution policy, ...).

3.4.1. JaSkel API

The current JaSkel prototype provides the programmer different versions of the Farm and
the Pipeline skeletons:

• a fully sequential Farm;

• a concurrent Farm that creates a new thread for each worker;

• a dynamic Farm, which sends only data to workers when they demand it;

• a fully sequential Pipeline;

• a concurrent Pipeline, which creates a new thread for each data flow.

A JaSkel skeleton is a simple Java class that implements the Skeleton interface and extends
the Compute class. The interface Skeleton defines a method eval that must be defined by
all the skeletons. This method starts the skeleton activity.

To create objects that will perform domain-specific computations, the programmer must cre-
ate a subclass of class Compute (inspired in muskel). The Compute abstract class defines
an abstract method public abstract Object compute(Object input) that defines the
domain-specific computations involved in a skeleton.

For instance, to create a Farm, a programmer needs to perform the following steps:

• to create the worker’s class, which is a subclass of Compute;

• to define the worker’s inherited method public Object compute(Object input);

• to create the master’s class which is a subclass of Farm;
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• to define the methods public Collection split(Object initialTask) and public
Object join(Collection partialResults);

• to create a new instance of the master’s class and call the method eval; this method
will basically perform the following steps:

– it creates multiple workers;

– it splits the initial data using the defined split method;

– it calls compute method from each worker with the pieces of data returned by
method split;

– it merges the partial results using the defined join method.

Figure 9 shows the Farm skeleton UML class diagram. Some mutators and accessors were
omitted.

Compute

+compute(input:Object):Object
+clone():Object

Farm

−numberOfWorkers:int
−initialTask:Object
−cloneableWorker:Compute
−workers:Vector
−outputResult:Object

+split(initialTask:Object):Collection
+join(partialResults:Collection):Object
+setInitialTask(initialTask:Object):void
+getResult():Object
+compute(input:Object):Object
+eval():void

<< interface >>
Skeleton

+eval():void

Figure 9: Sequential Farm skeleton: UML class diagram

The specialization or the creation of a new skeleton is done by class refinement. Figure 10
illustrates the parallel Farm skeleton UML class diagram, which extends the sequential Farm
skeleton.

Either the skeletons or the entities that will perform domain-specific code extend the class
Compute. Figure 11 illustrates the Pipeline skeleton, which also extends the Compute class.

JaSkel skeletons are also subclasses of Compute class to allow composition. Usually, the
method public Object compute(Object input) on skeletons calls the eval method to
start the skeleton activity.
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Compute

+compute(input:Object):Object
+clone():Object

Farm

−numberOfWorkers:int
−initialTask:Object
−cloneableWorker:Compute
−workers:Vector
−outputResult:Object

+split(initialTask:Object):Collection
+join(partialResults:Collection):Object
+setInitialTask(initialTask:Object):void
+getResult():Object
+compute(input:Object):Object
+eval():void

<< interface >>
Skeleton

+eval():void

FarmConcurrent

−tasks:Collection
−oTasks:Collection
−numberOfTasks:int
−numberOfReceivedTasks:int
−resultIsReady:Boolean

+eval():void
+takeFinalActions():void
+getResult():Object
+taskEnd(processor:int,output:Object):void

Figure 10: Parallel Farm skeleton: UML class diagram

3.4.2. Building skeleton-based applications

The best way to show how to build a skeleton-based application is through an example.

The problem: to find and count all prime numbers up to N.

A Solution8: begin with an (unmarked) array of integers from 2 to N. The first unmarked
integer, 2, is the first prime. Mark every multiple of this prime. Repeatedly take the next
unmarked integer as the next prime and mark every multiple of the prime. Note: Algorithm
proposed by Eratosthenes of Cyrene (276 BC - 194 BC).

We have a Java implementation that implements this algorithm; it marks the multiples, setting
them to 0. This implementation consists of two entities: a number generator and a prime
filter. The first generates the input integer array [2..N] and the latter filters the non-prime
integers. A prime filter has a list with the primes from 2 to sqrt(N) (called filter) and every

8Taken from http://www.nist.gov/dads/HTML/sieve.html
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Compute

+compute(input:Object):Object
+clone():Object

Pipeline

−nprocess:int
−inputTask:Object
−cloneableWorker:Compute
−workers:Collection
−outputResult:Object
−first:PipelineWorker
−oTasks:Collection

+split(inputTasks:Object):Collection
+join(tasks:Collection):Object
+setInputTask(task:Object):void
+getResult():Object
+compute(input:Object):Object
+eval():void
+getWorkers():Collection
+addWorker(worker:PipelineWorker):void

<< interface >>
Skeleton

+eval():void

PipelineWorker

−next:PipelineWorker
−master:Pipeline
−taskId:int
−oTasks:Collection

+setNextWorker(worker:PipelineWorker,master:Pipeline):void
+sendNext(input:Object):void
+eval(input:Object):void

Figure 11: Pipeline skeleton: UML class diagram

integer n from the input array will be divided by each prime of this list; if it does not find any
divisor, then n is prime.

This algorithm can be easily parallelized in two different ways:

• as a farm: the input array is decomposed in smaller pieces, and each piece is sent to a
prime filter; each prime filter will test the integers received using the filter [2..sqrt(N)];

• as a pipeline: each prime filter constitutes a pipeline stage and defines a different filter;
the input data is sent to the first pipeline stage and then flows between the adjacent
stages; when it reaches the end, all the non-primes integers were filtered.

The two next examples show how we can use the JaSkel framework to implement this
algorithm as a Farm and as a Pipeline. The implementation will count the primes up to
10,000,000.

Primes sieve as a Farm

The prime filter (farm worker) is illustrated in Code 3. Its main method is filter, which
filters the given integer array. The computemethod, needed to define the skeleton’s domain-
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specific code, delegates its job to the method filter. Note that the class PrimeFilter is a
subclass of Compute.

Code 4 illustrates the generator. It uses the skeleton FarmConcurrent, since it is its sub-
class. It defines the method split using the method generate2 and it defines the method
join as the identity method.

Code 5 shows the code that connects these entities. The performed steps are:

• it creates a prime filter object (pf) and initializes it (method init);

• it creates a new generator object (g), setting its parameters: the worker, the number of
processes (nprocess) and input data;

• it starts the skeleton activity, calling method eval;

• it gets the final result, using method getResult.

Note that in this example, the farm receives a null input data because the split method
already generates the integer blocks.

Output 4 illustrates the result of running the generator, with 4 workers.

Primes sieve as a Pipeline

The prime filter is illustrated in Code 6. The only difference between the farm and the
pipeline prime filter is that the first is a subclass of Compute, and the latter is a subclass
of PipelineWorker. The PipelineWorker class is a subclass of Compute, but it defines
three new methods:

• setNextWorker, which sets the pipeline’s stages;

• sendNext, which sends data to the next stage;

• eval, which calls method compute and makes the data flow between the adjacent
stages.

The generator, illustrated in Code 7, is defined in the same way as the Farm generator, but
it is a subclass of PipelineConcurrent.

Code 8 illustrates the code that connects these entities. The performed steps are:

• a list of prime filters is created (workers); all the filters are different and disjoint;
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• it creates a new generator object (g), setting its parameters: the workers list (stages)
and input data;

• it starts the skeleton activity, calling method eval;

• it gets the final result, using method getResult.

In this example, the pipeline also receives a null input data because the split method
already generates the integer blocks.

Output 5 illustrates the result of running the generator, with 4 stages. Note that it creates
four different prime filters.

3.4.3. Limitations

The current JaSkel prototype only provides one way to structure parallel applications. It will
soon provide more complete and robust skeletons which automatically distribute workers
among the nodes of a distributed environment.
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Code 3 Prime filter: farm worker
package jaskel.examples.primes;
import java.util.*;
import jaskel.Compute;

public class PrimeFilter extends Compute {

int[] myPrimes; // buffer to hold primes already calculated
int nPrimes; // number of primes calculated
PrimeFilter myNext; // next filter
double start;
int contaPrimos;
int packs;
int cupack = 0;
int SMaxP;
int myMaxP;
int myMinP;

public void init(int myMinP, int myMaxP, int SMaxP, PrimeFilter next,
int pac) {

cupack = 0;
myNext = next;
nPrimes = 0;
packs = pac;
this.myMinP = myMinP;
this.myMaxP = myMaxP;
this.SMaxP = SMaxP;

int[] pr = new int[SMaxP];
int nl = PrimeCalc.lowPrimes(SMaxP, pr);

myPrimes = new int[nl];
for (int i = 0; i < nl; i++)

if (pr[i] >= myMinP && pr[i] <= myMaxP)
myPrimes[nPrimes++] = pr[i];

System.out.println(nPrimes + " primes " + myMinP + "..." + myMaxP);
contaPrimos = 0;
start = new Date().getTime();

}

public synchronized int[] filter(final int[] num) {
cupack++;
for (int i = 0; i < num.length; i++) {

if (num[i] > 2) {
if (PrimeCalc.isPrime(num[i], myPrimes, nPrimes)) {

contaPrimos++;
} else

num[i] = 0;
}

}
return num;

}

/*
* This method is different from implementation to implementation.

*
* @see jaskel.Compute#compute(java.lang.Object)

*/
public Object compute(Object input) {

return this.filter((int[]) input);
}

}
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Code 4 Generator: farm master
package jaskel.examples.primes;

import jaskel.Compute;
import jaskel.FarmConcurrent;
import java.util.Collection;
import java.util.Enumeration;
import java.util.Vector;

public class GeneratorFarm extends FarmConcurrent {

int maxNumber;
int sMAX;
int blocksize;

public GeneratorFarm(Compute worker, int nprocess, Object inputTask) {
super(worker, nprocess, inputTask);

}

public Collection split(Object initialTask) {
return this.generate2(sMAX + 1, maxNumber, blocksize);

}

public Object join(Collection partialResults) {
return partialResults;

}

public Vector generate2(int iniNum, int maxNum, int blockSize) {
int[] ar = new int[blockSize];
int j = 0;
Vector tasks = new Vector();

for (int i = iniNum; i < maxNum; i += 2) {
ar[j++] = i;
if (j == blockSize) {

final int[] aux = ar;
tasks.add(aux);
j = 0;
ar = new int[blockSize];

}
}
for (int i = j; i < blockSize; i++)

ar[i] = 0;
ar[ar.length - 1] = -3;
tasks.add(ar);
return tasks;

}
}
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Code 5 Generator: farm master’s main method
public static void main(String[] args) {

int nprocess = 4;
int maxNumber = 10000000;
int sMAX = (int) Math.sqrt(maxNumber);
int blocksize = 100000;

int MaxP = maxNumber;
int SMaxP = sMAX;
int packs = MaxP / (2 * blocksize);
System.out.print("Primes up to " + MaxP + "; packages size " + blocksize / 2);
System.out.print(" (" + MaxP / (2 * blocksize) + " packages - size ");
System.out.println(4 * blocksize / 2 + " bytes)");

PrimeFilter pf = new PrimeFilter();
pf.init(1, SMaxP, SMaxP, null, packs);
GeneratorFarm g = new GeneratorFarm(pf, nprocess, null);

// Implementation details:
g.blocksize = blocksize;
g.maxNumber = maxNumber;
g.sMAX = sMAX;

// Starts the farming process and counts elapsed time
long t0 = System.currentTimeMillis();
g.eval();

// Get the final result
Object o = g.getResult();

long t1 = System.currentTimeMillis();
long elapsed = (t1 > t0 ? t1 - t0 : Long.MAX_VALUE - t0 + t1);
System.out.println("Elapsed time " + elapsed + " millis");

Enumeration e = ((Vector) o).elements();
int soma = 0;
while (e.hasMoreElements()) {

int[] num = (int[]) e.nextElement();
for (int i = 0; i < num.length; i++) {

if (num[i] > 0)
soma++;

}
}
System.out.println("Number of primes: " + soma);

}

Output 4 Prime sieve as a Farm
Primes up to 10000000; packages size: 50000 (50 packages - size 200000 bytes)
445 primes 1...3162
Concurrent Farm Skeleton Active
Elapsed time 2770 millis
Number of primes: 664133
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Code 6 Prime filter: pipeline stage
package jaskel.examples.primes;
import jaskel.PipelineWorker;
import java.util.Date;

public class PrimeFilter extends PipelineWorker {
int[] myPrimes; // buffer to hold primes already calculated
int nPrimes; // number of primes calculated
PrimeFilter myNext; // next filter
double start;
int contaPrimos;
int packs;
int cupack = 0;
int SMaxP;
int myMaxP;
int myMinP;

public void init(int myMinP, int myMaxP, int SMaxP, PrimeFilter next, int pac) {
cupack = 0;
myNext = next;
nPrimes = 0;
packs = pac;
this.myMinP = myMinP;
this.myMaxP = myMaxP;
this.SMaxP = SMaxP;

int[] pr = new int[SMaxP];
int nl = PrimeCalc.lowPrimes(SMaxP, pr);

myPrimes = new int[nl];
for (int i = 0; i < nl; i++)

if (pr[i] >= myMinP && pr[i] <= myMaxP)
myPrimes[nPrimes++] = pr[i];

System.out.println(nPrimes + " primes " + myMinP + "..." + myMaxP);
contaPrimos = 0;
start = new Date().getTime();

}

public synchronized int[] filter(final int[] num) {
cupack++;
for (int i = 0; i < num.length; i++) {

if (num[i] > 2) {
if (PrimeCalc.isPrime(num[i], myPrimes, nPrimes)) {

contaPrimos++;
} else

num[i] = 0;
}

}
return num;

}

public Object compute(Object input) {
return this.filter((int[]) input);

}
}
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Code 7 Generator: pipeline master
package jaskel.examples.primes;
import jaskel.PipelineConcurrent;
import java.util.Collection;
import java.util.Enumeration;
import java.util.Vector;

public class GeneratorPipeline extends PipelineConcurrent {
int maxNumber;
int sMAX;
int blocksize;

public GeneratorPipeline(Collection workers, Object inputTask) {
super(workers, inputTask);

}

public Collection split(Object inputTask) {
return this.generate2(sMAX + 1, maxNumber, blocksize);

}

public Object join(Collection tasks) {
return tasks;

}

public Vector generate2(int iniNum, int maxNum, int blockSize) {
int[] ar = new int[blockSize];
int j = 0;
Vector tasks = new Vector();

for (int i = iniNum; i < maxNum; i += 2) {
ar[j++] = i;
if (j == blockSize) {

final int[] aux = ar;
tasks.add(aux);
j = 0;
ar = new int[blockSize];

}
}
for (int i = j; i < blockSize; i++)

ar[i] = 0;
ar[ar.length - 1] = -3;
tasks.add(ar);
return tasks;

}
}
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Code 8 Generator: pipeline master’s main method
public static void main(String[] args) {

int nprocess = 4;
int maxNumber = 10000000;
int sMAX = (int) Math.sqrt(maxNumber);
int blocksize = 100000;

int MaxP = maxNumber;
int SMaxP = sMAX;
int packs = MaxP / (2 * blocksize);
System.out.print("Primes up to " + MaxP + "; packages size " + blocksize / 2);
System.out.print(" (" + MaxP / (2 * blocksize) + " packages - size ");
System.out.println(4 * blocksize / 2 + " bytes)");

PrimeFilter[] filtros = new PrimeFilter[nprocess];
Vector workers = new Vector();
try {

for (int i = nprocess - 1; i >= 0; i--) {
filtros[i] = new PrimeFilter();
if (i != (nprocess - 1))

filtros[i].init(i * SMaxP / nprocess + 1, (i + 1) * SMaxP
/ nprocess, SMaxP, filtros[i + 1], packs);

else
filtros[i].init(i * SMaxP / nprocess + 1, (i + 1) * SMaxP
/ nprocess, SMaxP, null, packs);

workers.add(filtros[i]);
}

} catch (Exception e) {
e.printStackTrace();

}

GeneratorPipeline g = new GeneratorPipeline(workers, null);

// Implementation details:
g.blocksize = blocksize;
g.maxNumber = maxNumber;
g.sMAX = sMAX;

// Starts the farming process and counts elapsed time
long t0 = System.currentTimeMillis();
g.eval();

// Get the final result
Object o = g.getResult();

long t1 = System.currentTimeMillis();
long elapsed = (t1 > t0 ? t1 - t0 : Long.MAX_VALUE - t0 + t1);
System.out.println("Elapsed time " + elapsed + " millis");

Enumeration e = ((Vector) o).elements();
int soma = 0;
while (e.hasMoreElements()) {

int[] num = (int[]) e.nextElement();
for (int i = 0; i < num.length; i++) {

if (num[i] > 0)
soma++;

}
}

System.out.println("Number of primes: " + soma);
}
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Output 5 Prime sieve as a Pipeline
Primes up to 10000000; packages size: 50000 (50 packages - size 200000 bytes)
95 primes 2372...3162
102 primes 1582...2371
111 primes 791...1581
137 primes 1...790
New Concurrent Pipeline Skeleton Active
Elapsed time 11149 millis
Number of primes: 664133

32



4. Tests and Evaluation

Chapter 2 and Chapter 3 present an automatic object distribution platform and a skeleton-
based Java framework. This chapter presents a comparative evaluation of alternative im-
plementation strategies for the first component and an interesting comparison between two
skeletons from the latter.

All the evaluation tests were run in a Linux cluster9 with 16 nodes, connected through a
Gigabit Ethernet. Each node is a bi-Xeon EM64T 3.2GHz with 2MB cache L2 and 2GB RAM.
The Linux kernel version is the 2.6.9-5.0.5.ELsmp and the Java version is the 1.5.0_02.

4.1. Evaluation methodology

The Java Grande Forum Benchmark Suite10 was selected to perform the comparative eval-
uation on the developed tools. The Java Grande Forum11 (JGF) is a community initiative
led by Sun and the Northeast Parallel Architectures Center (NPAC) that aims to promote
the use of Java for so-called "Grande" applications. A Grande application is an application
which has large requirements for memory, I/O, network bandwidth, or processing power.
The benchmark suite provides ways of measuring and comparing alternative Java execution
environments in ways which are relevant to Grande applications.

The benchmark suite consists of:

• sequential benchmarks, suitable for single processor execution;

• multi-threaded benchmarks, suitable for parallel execution on shared memory multi-
processors;

• MPI-based (MPJ) benchmarks, suitable for parallel execution on distributed memory
multiprocessors;

• language comparison benchmarks, which are a subset of the sequential benchmarks
translated into C.

Each of these benchmarks provide three benchmark types: low-level operations (referred as
Section 1), simple kernels (Section 2) and applications (Section 3). The low-level operations
benchmarks test the performance of low-level operations that will ultimately determine the
performance of real Java applications. The simple kernels are small applications that are

9SeARCH cluster, hosted at Departamento de Informática - Universidade do Minho
10http://www.epcc.ed.ac.uk/javagrande/javag.html
11http://www.javagrande.org
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commonly used in Grande applications, such as FFTs, LU Factorisation, sorting and search-
ing. The application benchmarks represent Grande applications, such as a raytracer and a
financial simulation, using Monte Carlo techniques [BSW+00].

The validation of the PPC-VM project tools is based on the JGF Benchmark suite. This work
contributes for that validation in two different ways: by providing detailed documentation
about the MPJ benchmarks (appendix A) and by testing the tools described in this report
using some of the benchmark suite examples.

The evaluation of the automatic object distribution platform follows the same approach as
the JGF Benchmark suite: it is based on low-level and on high-level tests.

The low-level evaluation measures the base communication latency and bandwidth. It is
based on a ping-pong test, which measures the costs of point-to-point communication for a
range of message lengths. This test is equivalent to the PingPong test provided by the JGF
MPJ benchmarks (Section 1). Bandwidth measures the rate at which data is passed over the
network and latency measures the amount of time a message takes to get from the source
node to the destination node.

The high-level evaluation measures the performance of a raytracing parallel algorithm, adopted
from the MPJ benchmark suite (Section 3).

4.2. Automatic object distribution platform

All performed tests compare the RMI-IIOP based platform with RMI-IIOP versions developed
from scratch. We also show the values for the platform’s current version, based on KaRMI.
Each test was executed 11 times, and the presented values correspond to the median value.

4.2.1. Low-level evaluation

Tables 1 and 2 show the obtained latency and bandwidth values. Figure 12 illustrates the
relation between these values.

The RMI-IIOP based platform performance is always worst than the RMI-IIOP version: in
some cases the performance degradation is superior to 100%, but for the largest message,
the performance is only 11% worst. The performance degradation was expected, since the
platform has the additional steps of deciding where to create the remote objects and then
proceed to their creation.

The KaRMI based platform is the one which achieves the best performance, since it is the
most optimized RMI form. KaRMI is based on an efficient object serialization mechanism
called uka.transport that replaces regular Java serialization from the java.io package
[NPH99].
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Size (bytes)
Time (microseconds)

RMI-IIOP RMI-IIOP Platform KaRMI Platform
0 1730 3787 250
8 1585 2175 250

100 1625 2387 250
1000 1935 5500 562

10000 4880 9162 1087
100000 17500 51537 2862
1000000 310500 346225 58662

Table 1: Latency values

Size (bytes)
Bandwidth (MB/s)

RMI-IIOP RMI-IIOP Platform KaRMI Platform
0 0.0005 0.0005 0.0040
8 0.0062 0.0046 0.0400

100 0.0601 0.0419 0.4000
1000 0.5047 0.1818 1.7777

10000 2.0011 1.0914 9.1954
100000 5.5803 1.9403 34.9345
1000000 3.1451 2.8882 17.0467

Table 2: Bandwidth values

Note: the obtained results are worst than expected, probably because the SeARCH cluster
is still in under tests.

4.2.2. High-level evaluation

Java Grande Forum Raytracer

The Java Grande Forum benchmark suite provides a raytracer parallel algorithm (described
in appendix A), which renders a scene with 64 spheres. We have created two new versions:
a RMI-IIOP equivalent implementation and a sequential version capable of distributing the
work among instances. The latter was used to test the automatic object distribution platform.

Tables 3, 4 and 5 show the execution times of the Java Grande Forum raytracer algorithm
to render scenes with 500x500, 1000x1000 and 2000x2000 pixels. The compared versions
are the RMI-IIOP version implemented from scratch and the RMI-IIOP and KaRMI based
platforms.
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Figure 12: Low-level tests

The raytracer results show that for larger images, the differences between the versions are
smaller. Rendering a 1000x1000 pixels image (Table 4), the RMI-IIOP version is 15% or
20% better than the RMI-IIOP based platform. The KaRMI based platform is about 10%
more efficient than the RMI-IIOP version and almost 20% more efficient than the RMI-IIOP
based platform.

Rendering a 2000x2000 pixels image (Table 5), the RMI-IIOP version is 10% or 15% better
than the RMI-IIOP based platform. The KaRMI based platform presented very similar results
to the RMI-IIOP version; in fact, for 32 processors, the RMI-IIOP version achieved the best
performance (8% better than the KaRMI platform). The KaRMI based platform performance
is about 5% better than the RMI-IIOP based platform one.

For the 500x500 pixels image rendering (Table 3), the differences between the several ver-
sions are more noticeable. The main reason is that the communication time takes a signifi-
cant amount of the total time.

Number of processors
Time (seconds)

RMI-IIOP RMI-IIOP Platform KaRMI Platform
1 51.834 54.387 44.419
2 32.075 30.394 25.831
4 18.663 18.077 17.368
8 14.584 15.610 10.906

16 10.631 13.807 10.510
32 10.512 16.269 8.480

Table 3: JGF Raytracer execution times: 500x500 image
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Number of processors
Time (seconds)

RMI-IIOP RMI-IIOP Platform KaRMI Platform
1 197.370 218.645 208.429
2 120.003 114.437 114.784
4 62.047 66.189 61.068
8 34.853 39.534 33.204

16 24.186 25.596 21.992
32 18.410 23.513 16.760

Table 4: JGF Raytracer execution times: 1000x1000 image

Number of processors
Time (seconds)

RMI-IIOP RMI-IIOP Platform KaRMI Platform
1 937.712 842.490 827.900
2 450.958 424.776 433.739
4 227.936 236.235 230.199
8 124.985 120.942 121.742

16 70.054 72.733 65.969
32 41.661 47.551 45.066

Table 5: JGF Raytracer execution times: 2000x2000 image

Figures 13 and 14 illustrate the speedup curves for the raytracer results. The formula to
calculate the speedup is very simple:

Speedup =
Sequential time

Parallel time

The sequential time is the execution time of the sequential version.

Figure 13 shows that the larger the image is, better is the speedup. Since the raytracer
is a farming, we observe efficiency degradation for smaller images because of relatively
increased communication overhead.

For the 2000x2000 image rendering, the RMI-IIOP based platform speedup is almost linear
up to 16 processors; using 32 processors, the efficiency is of 60%. Rendering a 500x500
pixels image, the RMI-IIOP based platform speedup is very poor, specially when compared
with the KaRMI based platform speedup.

The KaRMI based platform results are better, since it is the most efficient RMI form. However,
and strangely, for the 2000x2000 image rendering with 32 processors, the RMI-IIOP version
presented the best execution time.
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Figure 13: JGF RayTracer speedup (by image size)
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Figure 14: JGF RayTracer speedup (by type of implementation)
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4.3. JaSkel evaluation

It is not currently possible to automatically distribute code that is structured using the JaSkel
framework. However, we have some results that show an interesting comparison between
the same algorithm implemented as a Farm and as a Pipeline, using one bi-processor node.

Primes sieve comparison

Figure 15 illustrates the execution times of the primes sieve algorithm implemented as a
Farm and as a Pipeline (as shown in section 3.4.2).
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Figure 15: Primes sieve execution times, up to 10,000,000

The Farm and Pipeline execution times for one worker/stage are identical, since a Pipeline
with one stage is equivalent to a Farm with one worker. However, for a larger number of
workers/stages, the results are unexpectedly very different: the Pipeline execution times are
more than four times longer.

The Pipeline skeleton requires much more communication: for n stages, the Pipeline skele-
ton requires (1 + nstages) × packages messages, since each package passes by all the
stages and at the end it is returned to the master; the Farm skeleton requires 2 × packages
messages, since each package is sent to a worker and then it is returned to the master.
However, these tests were executed in a shared memory environment where there is no
data movement.

From these results it seems that the prime sieve algorithm is not suitable to be implemented
following a Pipeline approach. However, we have a manually tuned version implemented
as a Pipeline that has similar execution times to those presented by the Farm alternative;
this suggests that the Pipeline skeleton may have a flaw that requires further analysis and
code rewriting, to be performed as soon as the cluster nodes are stable enough to guarantee
evaluation results.
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5. Conclusions and Future Work

The main goal of this project was to contribute to a distributed Java virtual machine, providing
an integrated approach to parallel computing, where the skeleton-based framework is used
to structure parallel applications and the automatic object distribution platform is used to
distribute objects efficiently. However, the connection between these two components is not
yet implemented. This is the main drawback of the presented work.

The automatic object distribution platform that was developed satisfies the initial require-
ments: it distributes objects automatically among the nodes of a distributed environment
and it is extensible. The first requirement is successfully proved in this report. The second
requirement was also satisfied, since the platform was extended by other members of the
PPC-VM project to improve the base communication, to gather information about the dis-
tributed environment and to make better decisions when distributing objects. Some results
from the current version based on KaRMI were also shown.

The tests have shown that the developed platform may be less efficient than implementations
manually tuned, but the development time reduction outweighs the performance degradation
- at least, for the studied examples.

The developed skeleton-based framework presents a way to structure parallel OO applica-
tions worth pursuing; current prototype still provides few skeletons and the results show that
the Pipeline skeleton needs improvements.

This work also contributes with documentation about the Java Grande Forum parallel algo-
rithms. We do not know any document that describes all the JGF parallel algorithms imple-
mentation; we believe that this is a valuable document for someone who needs to understand
any of these implementations.

5.1. Future work

The work described in this report is far from complete and should be continued and extended.
As future work, we think that the most important things that must be done are:

• to connect JaSkel structured code with the automatic object distribution plat-
form: this is one of the most important improvements that must be done; we believe
that the JaSkel framework is a valuable component that will help programmers to main-
tain and to optimize their applications, but if we do not provide the connection between
the framework and the automatic object distribution platform, programmers will not
benefit from it;

• to implement all Java Grande Forum parallel algorithms using JaSkel: this will
validate even more the work and may arise some new interesting issues not yet con-
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sidered;

• to test and optimize the automatic object distribution platform: there is already
a KaRMI based version that improves the platform’s performance, but the information
gathering about the distributed environment must be improved;

• to implement new skeletons in the JaSkel framework: the skeleton-based frame-
work needs to implement a larger number of skeletons, so that a larger number of appli-
cations can be implemented using the framework; two of the more important skeletons
that must be implemented are the Heartbeat and the Divide-and-Conquer skeletons.
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Acronyms

ANTLR ANother Tool for Language Recognition

API Application Program Interface

AST Abstract Syntax Tree

CORBA Common Object Request Broker Architecture

DJVM Distributed Java Virtual Machine

IIOP Inter-ORB Protocol

JGF Java Grande Forum

JIT (compilation) Just-in-time (compilation)

MPI Message Passing Interface

ORB Object Request Broker

RMI Remote Method Invocation

RMI-IIOP Remote Method Invocation over IIOP

UML Unified Modeling Language

VM Virtual Machine
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A. Java Grande Forum MPJ Benchmarks

This document describes a subset of algorithms from the Java grande Forum MPJ Bench-
marks. The descriptions emphasize the implementations parallelism, describing where and
which data is exchanged between processors. The benchmark suite design description is
out of the scope of this document. For more informations about this subject, see [BSW+99,
BSW+00,SBO01]

A.1. Section 2: Kernels

A.1.1. Series

Algorithm description

Periodic functions may be represented in terms of an infinite sum of sines and cosines.The
computation and study of Fourier series is known as harmonic analysis and is extremely
useful as a way to break up an arbitrary periodic function into a set of simple terms that can
be plugged in, solved individually, and then recombined to obtain the solution to the original
problem or an approximation to it to whatever accuracy is desired or practical.

According to the theory developed by Fourier, any periodic function F(t), with period T , may
be represented by an infinite series of the form.

F(t) =
a0

2
+

∞∑
n=1

an cos nωT t + bn sin ωT t

where the coefficients a0,an and bn for a given periodic function F(t) are calculated by the
formulas

ωT =
2π
T

a0 =
2
T

∫ T

0
F(t) dt

an =
2
T

∫ T

0
F(t) cos nωT t dt n = 1, 2, . . .

bn =
2
T

∫ T

0
F(t) sin nωT t dt n = 1, 2, . . .

This series is called the Fourier series and the coefficients are called the Fourier coefficients.
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The JGF benchmark algorithm computes the first N Fourier coefficients of the function F(x) =
(x + 1)x on the interval 0, 2, where N is an arbitrary number that is set to make the test last
long enough to be accurately measured by the system clock. Results are reported in number
of coefficients calculated per second.

Algorithm methods

All the algorithms in JGF benchmark suite include control classes that initialise input data,
implement validation methods and in some cases they even do data distribution among pro-
cesses.

This algorithm’s main class is SeriesTest and its control class is JGFSeriesBench. The
control class determines the array size (p_array_rows) on each process (method JGFinitialize),
as Code 9 illustrates.

Code 9 Series algorithm: partial arrays initialization
42 public void JGFinitialise(){
43 array_rows = datasizes[size];

45 /* determine the array dimension size on each process
46 p_array_rows will be smaller on process (nprocess-1).
47 ref_p_array_rows is the size on all processes except process (nprocess-1),
48 rem_p_array_rows is the size on process (nprocess-1).
49 */

51 p_array_rows = (array_rows + nprocess -1) / nprocess;
52 ref_p_array_rows = p_array_rows;
53 rem_p_array_rows = p_array_rows - ((p_array_rows*nprocess) - array_rows);
54 if(rank==(nprocess-1)){
55 if((p_array_rows*(rank+1)) > array_rows) {
56 p_array_rows = rem_p_array_rows;
57 }
58 }

60 buildTestData();
61 }

buildTestDatamethod creates TestArray array on process rank 0 and creates p_TestArray
array on every process (the size of this array is determined in the data initialisation in class
JGFSeriesBench). Code 10 shows how buildTestDatamethod is implemented and Figure
16 illustrates the data distribution.

After data initialisation, Do method is called (defined in line 85). This is the main method that
will calculate the first n pairs of Fourier coefficients of the function (x+1)x on the interval 0, 2.
n is given by variable array_rows and the number of integration steps is fixed to 1000.
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Code 10 Series algorithm: arrays creation
64 void buildTestData()
65 {
66 // Allocate appropriate length for the double array of doubles.
67
68 if(JGFSeriesBench.rank==0) {
69 TestArray = new double [2][array_rows];
70 }
71 p_TestArray = new double [2][p_array_rows];
72 }

Figure 16: Data distribution in Series algorithm

Algorithm parallelization

The most time consuming component of the benchmark is the loop over the Fourier co-
efficients. Each iteration of the loop is independent of every loop and the work may be
distributed simply between processes. Parallelism is in Do method and TestArray variable
is the result array containing all the coefficients pairs (an, bn).

Process rank 0 calculates a0 (line 96) and it is the responsible for joining all the partial
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results. All the processes calculate different coefficients independently and put them in a
partial result array named p_TestArray. This array is sent to process rank 0 to be merged
in TestArray, as Code 11 illustrates.

Code 11 Series algorithm: data merging
137 MPI.COMM_WORLD.Barrier();
138
139 // Send all the data to process 0
140
141 if(JGFSeriesBench.rank==0) {
142
143 for(int k=1;k<p_array_rows;k++){
144 TestArray[0][k] = p_TestArray[0][k];
145 TestArray[1][k] = p_TestArray[1][k];
146 }
147
148 for(int k=1;k<JGFSeriesBench.nprocess;k++) {
159
150 MPI.COMM_WORLD.Recv(p_TestArray[0],0,p_TestArray[0].length,MPI.DOUBLE,k,k);
151 MPI.COMM_WORLD.Recv(p_TestArray[1],0,p_TestArray[1].length,MPI.DOUBLE,k,
152 k+JGFSeriesBench.nprocess);
153
154 if(k==(JGFSeriesBench.nprocess-1)) {
155 p_array_rows = rem_p_array_rows;
156 }
157
158 for(int j=0;j<p_array_rows;j++){
159 TestArray[0][j+(ref_p_array_rows*k)] = p_TestArray[0][j];
160 TestArray[1][j+(ref_p_array_rows*k)] = p_TestArray[1][j];
161 }
162
163 }
164
165 p_array_rows = ref_p_array_rows;
166
167 } else {
168
169 MPI.COMM_WORLD.Ssend(p_TestArray[0],0,p_TestArray[0].length,MPI.DOUBLE,0,

JGFSeriesBench.rank);
170 MPI.COMM_WORLD.Ssend(p_TestArray[1],0,p_TestArray[1].length,MPI.DOUBLE,0,
171 JGFSeriesBench.rank+JGFSeriesBench.nprocess);
172 }

The process interaction model used by this algorithm is usually called Farming because
there is a manager process which splits initial data in a set of independent tasks, distributes
each task by a different worker and in the end it collects the results.

A.1.2. LU factorisation

Algorithm description

Gaussian elimination transforms the system Ax = b into an equivalent system Ux = y, where
U is an upper triangular matrix. To perform this transformation, we calculate a sequence of
multipliers.

48



If we want to calculate the system Ax = c using simple gaussian elimination, then we need
to perform the method from the beginning, calculating all the multipliers again.

LU factorisation solves this problem. Basically, it stores all the multipliers in a lower triangular
matrix L that has ones on the main diagonal and zeros above the diagonal and where every
other element L[ j, i] is the multiplier A[ j, i]/pivot (where pivot is the value of the pivot element
used for column i). In the end, the matrix product of L and U will be equal to the matrix A.

Having L and U matrices calculated, we have:

Ax = b ⇔

(LU)x = b ⇔

L(Ux) = b

So, calculating the system Ax = b is the same as calculating the following two systems:

Ly = b (1)
Ux = y (2)

We can use forward substitution to solve 1 for y and then use back substitution to solve 2 for
x.

The great advantage of this method is that once we have computed L and U, we can easily
solve the system Ax = b for different right-hand sides b.

The JGF benchmark algorithm solves a N × N linear system using LU factorisation followed
by a triangular solve. It is a Java version of the well known Linpack benchmark. Performance
units are Mflops per second.

Algorithm methods

This algorithm’s main class is Linpack and its control class is JGFLUFactBench. In the
control class, method JGFinitialise is the responsible for the data initialisation. It creates
matrices a, b and x in process rank 0 and it determines the size of the sub arrays and copy
the data in a cyclic manner to the sub array buf_a.

The other two main methods are dgefa and dgesl. dgefamethod factors a double precision
matrix by gaussian elimination and it is done in parallel. dgesl method solves the double
precision system a ∗ x = b or trans(a) ∗ x = b using the factors computed by dgefa. This
method is executed in the process rank 0.
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This algorithm uses Gaussian elimination with partial pivoting, which is used to minimize
the growth of machine roundoff error during a solution. Partial pivoting is the interchanging
of rows in order to place a particularly "good" element in the diagonal position prior to a
particular operation. The implementation takes notes of each switch in equations (that’s the
reason for extra integer array ipvt).

Algorithm parallelization

LU factorisation is the only part of the algorithm that is done in parallel. The forward and
back substitutions to solve the system are done in process rank 0 in serial. Thus, dgesl
method is executed only in process rank 0.

The initial data distribution is made in the method JGFinititialise where process rank 0
sends the matrix lines in a cyclic fashion to every process. Each process will store its lines
in array buf_a. Code 12 shows how the data is distributed and Figure 17 illustrates it.

Code 12 LU Factorisation algorithm: data distribution
87 if(rank==0) {
88 r_count = 0;
89 z_count = 0;
90 for(int i=0;i<a.length;i++){
91 if(r_count==0) {
92 for(int l=0;l<a[0].length;l++){
93 buf_a[z_count][l] = a[i][l];
94 }
95 z_count++;
96 } else {
97 MPI.COMM_WORLD.Send(a,i,1,MPI.OBJECT,r_count,10);
98 }
99
100 buf_list[i] = z_count - 1;
101 list[i] = r_count;
102 r_count++;
103 if(r_count == nprocess) {
104 r_count = 0;
105 }
106
107 }
108
109 } else {
110 for(int i=0;i<real_p_ldaa;i++){
111 MPI.COMM_WORLD.Recv(buf_a,i,1,MPI.OBJECT,0,10);
112 }
113 for(int i=real_p_ldaa;i<buf_a.length;i++){
114 for(int ki=0;ki<buf_a[0].length;ki++){
115 buf_a[i][ki] = -9.0;
116 }
117 }
118
119 }
120
121 MPI.COMM_WORLD.Bcast(list,0,list.length,MPI.INT,0);
122 MPI.COMM_WORLD.Bcast(buf_list,0,list.length,MPI.INT,0);
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Figure 17: Data distribution in LU factorisation algorithm

This method also broadcasts arrays list and buf_list (lines 121 and 122). list[i] = p
means that process rank p has received the ith line.

In method dgefa, before the row elimination with column indexing, there are two arrays that
are broadcasted: an array of doubles (buf_col_k) and an array of integers (tmp_l). Code
13 illustrates this step.

Code 13 LU Factorisation algorithm: intermediate arrays broadcasting
219 /* Broadcast the copy buf_col_k to all processes */
220
221 MPI.COMM_WORLD.Bcast(buf_col_k,0,buf_col_k.length,MPI.DOUBLE,list[k]);
222 tmp_l[0] = l;
223 MPI.COMM_WORLD.Bcast(tmp_l,0,tmp_l.length,MPI.INT,list[k]);
224 l = tmp_l[0];

At the end of the method dgesl, each process send to process rank 0 its partial results.
Process rank 0 receives those results and collects them in array a, as Code 14 illustrates.
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Code 14 LU Factorisation algorithm: data merging
254 if(JGFLUFactBench.rank==0) {
255 z_count = 0;
256 for(int i=0;i<a.length;i++){
257 if(list[i]==JGFLUFactBench.rank) {
258 for(int jl=0;jl<a[0].length;jl++){
259 a[i][jl] = buf_a[z_count][jl];
260 }
261 z_count++;
262 } else {
263 MPI.COMM_WORLD.Recv(a,i,1,MPI.OBJECT,list[i],10);
264 }
265 }
266 } else {
267 for(int i=0;i<JGFLUFactBench.real_p_ldaa;i++){
268 MPI.COMM_WORLD.Send(buf_a,i,1,MPI.OBJECT,0,10);
269 }
270 }

A.1.3. SOR: successive over-relaxation

Algorithm description

Successive over-relaxation (SOR) is a generalization of Gauss-Seidel method. Gregory R.
Andrews book ( [And99, p.546]) explains clearly this method and its parallel implementations.

This benchmark performs an array access intensive test which computes 100 iterations of
successive over-relaxation on an N × N grid. Performance units are iterations per second.

Algorithm methods

The two classes of this algorithm are JGFSORBench and SOR. JGFKernel method in class
JGFSORBench is the responsible for the data partition and distribution. It basically splits the
matrix in blocks with the last two rows replicated, as represented in figure 18. Each processor
stores its block in array p_G and the process rank corresponds to the block number. Code
15 shows how data partition is implemented.

SORrun method in class SOR is the SOR algorithm that will run on each processor with dif-
ferent p_G arrays. It uses a "red-black" ordering mechanism [And99, p.546] to simplify its
parallelisation.

Algorithm parallelization

In order to update elements of the principle array during each iteration, neighbouring ele-
ments of the array are required, including elements previously updated. Hence this bench-
mark is, in this form, inherently serial. To allow parallelisation to be carried out, the algorithm
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Code 15 SOR algorithm: data partition
87 /* copy or send the values of G to the sub arrays p_G */
88 if(rank==0) {
89 if(nprocess==1) {
90 iup = p_row+1;
91 } else {
92 iup = p_row+2;
93 }
94
95 for(int i=1;i<iup;i++) {
96 for(int j=0;j<p_G[0].length;j++) {
97 p_G[i][j] = G[i-1][j];
98 }
99 }
100
101 for(int j=0;j<G[0].length;j++) {
102 p_G[0][j] = 0.0;
103 }
104
105 for(int k=1;k<nprocess;k++) {
106 if(k==nprocess-1) {
107 m_length = rem_p_row + 1;
108 } else {
109 m_length = p_row + 2;
110 }
111 MPI.COMM_WORLD.Send(G,(k*p_row)-1,m_length,MPI.OBJECT,k,k);
112 }
113
114 } else {
115 MPI.COMM_WORLD.Recv(p_G,0,p_row+2,MPI.OBJECT,0,rank);
116 }
117
118 if(rank==(nprocess-1)) {
119 for(int j=0;j<datasizes[size];j++){
120 p_G[p_G.length-1][j] = 0.0;
121 }
122 }
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Figure 18: Data distribution in SOR algorithm
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uses a "red-black" ordering mechanism. This allows the loop over array rows to be par-
allelised, hence the outer loop over elements is distributed between processors in a block
manner. [SBO01]

Using this strategy, the outer loop runs twice over iterations and in each cycle iteration it
works only on even or on odd entries (running the loop twice over iterations assure that all
entries are used). Code 16 shows how the loop is programmed.

Code 16 SOR algorithm: main loop
56 for (int p=0; p<2*num_iterations; p++) {
57 for (int i=ilow+(p%2); i<ihigh; i=i+2) {

...
103 }

...
117 }

At the end of each iteration, all the processes need to synchronize with their neighbours.
All processes, except the last one (nprocess-1), exchange data with the next neighbour
process (rank+1), sending it the ante-penultimate row and receiving from it the last row. In
the same way, all processes, except the first one, exchange data with the previous neighbour
process (rank-1), sending it the second row and receiving from it the first row.

Figure 19 illustrates this synchronization mechanism and Code 17 show how it is pro-
grammed.

Code 17 SOR algorithm: synchronization between processes
107 if(JGFSORBench.rank!=JGFSORBench.nprocess-1) {
108 MPI.COMM_WORLD.Sendrecv(p_G[p_G.length-2],0,

p_G[p_G.length-2].length,
MPI.DOUBLE,

109 JGFSORBench.rank+1,1,
110 p_G[p_G.length-1],0,

p_G[p_G.length-1].length,MPI.DOUBLE,
JGFSORBench.rank+1,2);

111 }
112 if(JGFSORBench.rank!=0){
113 MPI.COMM_WORLD.Sendrecv(p_G[1],0,p_G[1].length,

MPI.DOUBLE,JGFSORBench.rank-1,2,
114 p_G[0],0,p_G[0].length,MPI.DOUBLE,

JGFSORBench.rank-1,1);
115 }

When we reach the desired number of iterations and the last synchronization step between
processes, every process sends to process rank 0 its partial results (stored in array p_G) and
process rank 0 joins them in the result matrix G. Code 18 shows how this step is programmed.

The process interaction model used by this algorithm is usually called Heartbeat, because
data is divided among workers, each is responsible for updating a particular part and new
data values depend on values held by worker on their immediate neighbors. It is called
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Figure 19: Synchronization mechanism in SOR algorithm
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Code 18 SOR algorithm: data merging
123 MPI.COMM_WORLD.Barrier();
124 System.gc();
125 if(JGFSORBench.rank==0) {

127 for(int i=1;i<p_G.length-1;i++) {
128 for(int j=0;j<G[0].length;j++) {
129 G[i-1][j] = p_G[i][j];
130 }
131 }

133 for(int k=1;k<JGFSORBench.nprocess;k++) {
134 if(k==(JGFSORBench.nprocess-1)) {
135 rm_length = JGFSORBench.rem_p_row;
136 } else {
137 rm_length = JGFSORBench.p_row;
138 }
139 MPI.COMM_WORLD.Recv(G,k*JGFSORBench.p_row,rm_length,MPI.OBJECT,k,k);
140 System.gc();
141 }

144 } else {

146 for(int k=1;k<JGFSORBench.nprocess;k++){
147 if(JGFSORBench.rank==k) {
148 MPI.COMM_WORLD.Ssend(p_G,1,JGFSORBench.p_row,

MPI.OBJECT,0,JGFSORBench.rank);
149 }
150 }
151 }

Heartbeat because the actions of each worker are like the beating of a heart: expand, send-
ing information out; contract, gathering new information; then process the information and
repeat [And99].

A.1.4. Crypt: IDEA encryption

Algorithm description

In cryptography, the International Data Encryption Algorithm (IDEA) is a block cipher de-
signed by Xuejia Lai and James L. Massey of ETH-Zürich and was first described in 1991.
The algorithm was intended as a replacement for the Data Encryption Standard. IDEA is a
minor revision of an earlier cipher, PES (Proposed Encryption Standard); IDEA was originally
called IPES (Improved PES).

This benchmark test performs IDEA encryption then decryption and it is based on code
presented in Applied Cryptography by Bruce Schneier, which was based on code developed
by Xuejia Lai and James L. Massey. Performance units are iterations per second.
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Algorithm methods

This algorithm’s main class is IDEATest and its control class is JGFCryptBench. The control
class determines the array size (p_array_rows) on each process, as Code 19 illustrates.

Code 19 Crypt algorithm: partial arrays initialization
42 public void JGFinitialise(){
43 array_rows = datasizes[size];
44
45 /* determine the array dimension size on each process
46 p_array_rows will be smaller on process (nprocess-1).
47 ref_p_array_rows is the size on all processes except process (nprocess-1),
48 rem_p_array_rows is the size on process (nprocess-1).
49 */
50
51 p_array_rows = (((array_rows / 8) + nprocess -1) / nprocess)*8;
52 ref_p_array_rows = p_array_rows;
53 rem_p_array_rows = p_array_rows - ((p_array_rows*nprocess) - array_rows);
54 if(rank==(nprocess-1)){
55 if((p_array_rows*(rank+1)) > array_rows) {
56 p_array_rows = rem_p_array_rows;
57 }
58 }
59
60 buildTestData();
61 }

buildTestData method, illustrated in Code 20, creates on process rank 0 three byte arrays
(plain1, crypt1 and plain2). It also creates three smaller byte arrays on every process
(p_plain1, p_crypt1 and p_plain2) that will be used for partial results. The size of these
arrays was determined in the data initialisation in class JGFCryptBench.

The main method of this test is cipher_idea, which processes plaintext in 64-bit blocks, one
at a time, breaking the block into four 16-bit unsigned subblocks. It goes through eight rounds
of processing using 6 new subkeys each time, plus four for last step. The source text is in
array p_plain1, the destination text goes into array p_plain2 The routine represents 16-bit
subblocks and subkeys as type int so that they can be treated more easily as unsigned.
Multiplication modulo 0x10001 interprets a zero sub-block as 0x10000; it must to fit in 16
bits.

Do method is the one which calls cipher_idea to crypt and decrypt the message.

Algorithm parallelization

Data distribution is made in the method Do, where process rank 0 splits the plain message
and send the tagged pieces (using Ssend primitive) to the other processes. Code 21 shows
how data distribution is implemented and Figure 20 illustrates it. Note that process rank 0
has a p_plain1 array too, but it doesn’t need to be broadcasted (figure 20 marks p_plain1
in process 0 as local).
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Code 20 Crypt algorithm: data initialization
129 void buildTestData()
130 {
131
132
133 // Create three byte arrays that will be used (and reused) for
134 // encryption/decryption operations.
135
136 if(JGFCryptBench.rank==0) {
137 plain1 = new byte [array_rows];
138 crypt1 = new byte [array_rows];
139 plain2 = new byte [array_rows];
140 }
141
142 p_plain1 = new byte [p_array_rows];
143 p_crypt1 = new byte [p_array_rows];
144 p_plain2 = new byte [p_array_rows];
145
146 Random rndnum = new Random(136506717L); // Create random number generator.

...

159 userkey = new short [8]; // User key has 8 16-bit shorts.
160 Z = new int [52]; // Encryption subkey (user key derived).
161 DK = new int [52]; // Decryption subkey (user key derived).

...

165 for (int i = 0; i < 8; i++)
166 {
167 // Again, the random number function returns int. Converting
168 // to a short type preserves the bit pattern in the lower 16
169 // bits of the int and discards the rest.
170
171 userkey[i] = (short) rndnum.nextInt();
172 }
173
174 // Compute encryption and decryption subkeys.
175
176 calcEncryptKey();
177 calcDecryptKey();
178
179 // Fill plain1 with "text."
180 // do on process 0 for reference
181
182 if(JGFCryptBench.rank==0) {
183 for (int i = 0; i < array_rows; i++)
184 {
185 plain1[i] = (byte) i;
186
187 // Converting to a byte
188 // type preserves the bit pattern in the lower 8 bits of the
189 // int and discards the rest.
190 }
191 }
192
193 }
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Code 21 Crypt algorithm: data distribution
82 if(JGFCryptBench.rank==0) {
83 for (int i = 0; i < p_array_rows; i++) {
84 p_plain1[i] = plain1[i];
85 }
86 for(int k=1;k<JGFCryptBench.nprocess;k++){
87 if(k==JGFCryptBench.nprocess-1) {
88 m_length = rem_p_array_rows;
89 } else {
90 m_length = p_array_rows;
91 }
92 MPI.COMM_WORLD.Ssend(plain1,(p_array_rows*k),m_length,MPI.BYTE,k,k);
93 }
94 } else {
95 MPI.COMM_WORLD.Recv(p_plain1,0,p_array_rows,MPI.BYTE,0,JGFCryptBench.rank);
96 }

Figure 20: Data distribution in IDEA encryption algorithm
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Each process receives its piece, encrypts it, decrypts it and then send the result (p_plain1)
back to process rank 0 which puts all the pieces together. Code 22 illustrates this process.

Code 22 Crypt algorithm: processing and data merging
98 cipher_idea(p_plain1, p_crypt1, Z); // Encrypt plain1.
99 cipher_idea(p_crypt1, p_plain2, DK); // Decrypt.
100
101 MPI.COMM_WORLD.Barrier();
102
103 if(JGFCryptBench.rank==0) {
104 for(int k=0; k<p_array_rows;k++){
105 plain2[k] = p_plain2[k];
106 }
107
108 for(int k=1;k<JGFCryptBench.nprocess;k++) {
107 MPI.COMM_WORLD.Recv(plain2,(p_array_rows*k),p_array_rows,MPI.BYTE,k,k);
110 }
111 } else {
112 MPI.COMM_WORLD.Ssend(p_plain2,0,p_array_rows,MPI.BYTE,0,JGFCryptBench.rank);
113 }

The process interaction model used by this algorithm is usually called Farming.

A.1.5. Sparse Matrix Multiplication

Algorithm description

The matrix product A × B = C, where A and B are n × n matrices requires n2 inner products.
Each inner product is the sum (plus reduction) of the pairwise products of two vectors of
length n.

A sparse matrix is a matrix where most entries are zero and the product of two sparse
matrices is also a sparse matrix. This is because a zero in the two argument matrices will
lead to a zero in n vector products.

This test multiplies a N×N sparse matrix stored in compressed-row format by a dense vector
10 times. Performance units are iterations per second.

The compressed row format (CRS) puts the subsequent nonzeros of the matrix rows in
contiguous memory locations. Assuming we have a nonsymmetric sparse matrix A, we
create three vectors: one for floating point numbers (val) and the other two for integers
(col_ind, row_ptr). The val vector stores the values of the nonzero elements of the matrix A
as they are traversed in a row-wise fashion. The col_ind vector stores the column indexes
of the elements in the val vector. That is, if val(k) = ai j, then col_ind(k) = j. The row_ptr
vector stores the locations in the val vector that start a row; that is, if val(k) = ai j, then
row_ptr(i) =< k < row_ptr(i + 1).
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Algorithm methods

This algorithm’s main class is SparseMatmult and its control class is JGFSparseMatmultBench.
The two main methods are JGFinitialise() (class JGFSparseMatmultBench) and test()
(class SparseMatmult).

This is a case where the control class also distributes data among the processes. In the
method JGFinitialise(), process rank 0 creates the three vectors that represent the
sparse matrix (buf_val, buf_row and buf_col). It also creates three partial vectors with
random values (val, row and col) which will be used by the other processes. These three
arrays will have different values for different processes. Code 23 illustrates this process.

Code 23 Sparse matrix multiplication: data initialization
64 public void JGFinitialise() throws MPIException{
65
66
67 /* Determine the size of the arrays row,val and col on each
68 process. Note that the array size on process (nprocess-1) may
69 be smaller than the other array sizes.
70 */
71
72 p_datasizes_nz = (datasizes_nz[size] + nprocess -1) /nprocess;
73 ref_p_datasizes_nz = p_datasizes_nz;
74 rem_p_datasizes_nz = p_datasizes_nz - ((p_datasizes_nz*nprocess) - datasizes_nz[size]);
75 if(rank==(nprocess-1)){
76 if((p_datasizes_nz*(rank+1)) > datasizes_nz[size]) {
77 p_datasizes_nz = rem_p_datasizes_nz;
78 }
79 }
80
81 /* Initialise the arrays val,col,row. Create full sizes arrays on process 0 */
82
83 x = RandomVector(datasizes_N[size], R);
84 y = new double[datasizes_M[size]];
85 p_y = new double[datasizes_M[size]];
86
87 val = new double[p_datasizes_nz];
88 col = new int[p_datasizes_nz];
89 row = new int[p_datasizes_nz];
90
91 if(rank==0) {
92 buf_val = new double[datasizes_nz[size]];
93 buf_col = new int[datasizes_nz[size]];
94 buf_row = new int[datasizes_nz[size]];
95 }

In the method test(), array p_y is calculated based on the three partial arrays val, row
and col, which means that different processes will calculate different parts of p_y.
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Algorithm parallelization

Data distribution is made in the method JGFinitialise which sends to each process parts
of the three complete arrays, as shown in Code 24. Figure 21 illustrates the distribution of
one of those vectors - buf_val. Each process stores the received values in arrays row, col
and val and calculates different parts of the matrix.

Code 24 Sparse matrix multiplication: data distribution
101 if(rank==0) {
102
103 for (int i=0; i<p_datasizes_nz; i++) {
104
105 // generate random row index (0, M-1)
106 row[i] = Math.abs(R.nextInt()) % datasizes_M[size];
107 buf_row[i] = row[i];
108 // generate random column index (0, N-1)
109 col[i] = Math.abs(R.nextInt()) % datasizes_N[size];
110 buf_col[i] = col[i];
111 val[i] = R.nextDouble();
112 buf_val[i] = val[i];
113 }
114
115 for(int k=1;k<nprocess;k++) {
116 if(k==nprocess-1) {
117 p_datasizes_nz = rem_p_datasizes_nz;
118 }
119 for (int i=0; i<p_datasizes_nz; i++) {
120 buf_row[i+(k*ref_p_datasizes_nz)] = Math.abs(R.nextInt()) % datasizes_M[size];
121 buf_col[i+(k*ref_p_datasizes_nz)] = Math.abs(R.nextInt()) % datasizes_N[size];
122 buf_val[i+(k*ref_p_datasizes_nz)] = R.nextDouble();
123 }
124 MPI.COMM_WORLD.Ssend(buf_row,(k*ref_p_datasizes_nz),p_datasizes_nz,MPI.INT,k,1);
125 MPI.COMM_WORLD.Ssend(buf_col,(k*ref_p_datasizes_nz),p_datasizes_nz,MPI.INT,k,2);
126 MPI.COMM_WORLD.Ssend(buf_val,(k*ref_p_datasizes_nz),p_datasizes_nz,MPI.DOUBLE,k,3);
127 }
128
129 p_datasizes_nz = ref_p_datasizes_nz;
130 } else {
131 MPI.COMM_WORLD.Recv(row,0,p_datasizes_nz,MPI.INT,0,1);
132 MPI.COMM_WORLD.Recv(col,0,p_datasizes_nz,MPI.INT,0,2);
133 MPI.COMM_WORLD.Recv(val,0,p_datasizes_nz,MPI.DOUBLE,0,3);
134 }

For the (i + 1)th iteration, each process will need the values calculated from other processes
in iteration i. AllReduce primitive is used at the end of every iteration to update the values
on each process. AllReduce primitive is the same as reduce except that the result appears
in receive buffer of all process in the group. Code 25 illustrates the use of the AllReduce
primitive.

The process interaction model used by this algorithm without iterations is usually called
Farming, but since it is iterative and it needs to synchronize at the end of each iteration, the
model is the Heartbeat.
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Figure 21: Data distribution in Sparse algorithm

Code 25 Sparse matrix multiplication: intermediate communication and synchronization
40 MPI.COMM_WORLD.Barrier();
41 if(JGFSparseMatmultBench.rank==0){
42 JGFInstrumentor.startTimer("Section2:SparseMatmult:Kernel");
43 }
44
45 for (int reps=0; reps<NUM_ITERATIONS; reps++)
46 {
47 for (int i=0; i<nz; i++)
48 {
49 p_y[ row[i] ] += x[ col[i] ] * val[i];
50 }
51 // create updated copy on each process
52 MPI.COMM_WORLD.Allreduce(p_y,0,y,0,y.length,MPI.DOUBLE,MPI.SUM);
53 }
54
55 MPI.COMM_WORLD.Barrier();
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A.2. Section 3: Large Scale Applications

A.2.1. Molecular Dynamics simulation

Algorithm description

MolDyn is an N-body code modelling particles interacting under a Lennard-Jones potential
in a cubic spatial volume with periodic boundary conditions. Performance is reported in
interactions per second. The number of particles is give by N. The original Fortran 77 code
was written by Dieter Heerman, Institut für Theoretische Physik, Germany and converted to
Java by Lorna Smith, EPCC.

Algorithm diagrams

The main method of this algorithm is runiters (in class md), where all the parallelism and
communication is performed and where the forces on particles are calculated. There is other
class (in the same file) named particle which contains methods that work on particles.

Algorithm parallelization

The computationally intense component of the benchmark is the force calculation, which
calculates the force on a particle in a pair wise manner. This involves an outer loop over
all particles in the system and an inner loop ranging from the current particle number to
the total number of particles. The outer loop has been parallelised by dividing the range
of the iterations of the outer loop between the processes, in a cyclic manner to avoid load
imbalance [SBO01]. A copy of the all the particle data is maintained on each process.

The outer loop is in method runiters (class md, line 217) and the inner loop is in method
force (class particle, line 366).

The data distribution made in method runiters is illustrated in figure 22 and Code 26 shows
how it is programmed.

Code 26 Molecular Dynamics simulation: data distribution
231 for (i=0+JGFMolDynBench.rank;i<mdsize;i+=JGFMolDynBench.nprocess) {
232 one[i].force(side,rcoff,mdsize,i); /* compute forces */
233 }

runiters method also makes a global reduction on partial sums of the forces, epot, vir
and interactions. It uses AllReduce primitive with the operation MPI.SUM and with ar-
rays tmp_xforce, tmp_yforce, tmp_zforce, tmp_epot, tmp_vir and tmp_interactions.
Code 27 shows how the global reduction is implemented.
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Figure 22: Data distribution in molecular dynamics simulation
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Code 27 Molecular Dynamics simulation: global reduction
237 /* global reduction on partial sums of the forces,

epot, vir and interactions */

240 for (i=0;i<mdsize;i++) {
241 tmp_xforce[i] = one[i].xforce;
242 tmp_yforce[i] = one[i].yforce;
243 tmp_zforce[i] = one[i].zforce;
244 }

246 MPI.COMM_WORLD.Allreduce(tmp_xforce,0,tmp_xforce,
0,mdsize,MPI.DOUBLE,MPI.SUM);

247 MPI.COMM_WORLD.Allreduce(tmp_yforce,0,tmp_yforce,
0,mdsize,MPI.DOUBLE,MPI.SUM);

248 MPI.COMM_WORLD.Allreduce(tmp_zforce,0,tmp_zforce,
0,mdsize,MPI.DOUBLE,MPI.SUM);

250 for (i=0;i<mdsize;i++) {
251 one[i].xforce = tmp_xforce[i];
252 one[i].yforce = tmp_yforce[i];
253 one[i].zforce = tmp_zforce[i];
254 }

256 tmp_epot[0] = epot;
257 tmp_vir[0] = vir;
258 tmp_interactions[0] = interactions;

260 MPI.COMM_WORLD.Allreduce(tmp_epot,0,tmp_epot,
0,1,MPI.DOUBLE,MPI.SUM);

261 MPI.COMM_WORLD.Allreduce(tmp_vir,0,tmp_vir,
0,1,MPI.DOUBLE,MPI.SUM);

262 MPI.COMM_WORLD.Allreduce(tmp_interactions,0,tmp_interactions,
0,1,MPI.DOUBLE,MPI.SUM);

264 epot = tmp_epot[0];
265 vir = tmp_vir[0];
266 interactions = tmp_interactions[0];

268 MPI.COMM_WORLD.Barrier();
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A.2.2. Monte Carlo simulation

Algorithm description

A simulation can be seen as a method meant to imitate a real-life system. A Monte Carlo
simulation is a simulation where random values are generated for some (or all) variables
over and over.

This test performs a financial simulation, using Monte Carlo techniques to price products
derived from the price of an underlying asset. The code generates N sample time series
with the same mean and fluctuation as a series of historical data. Performance is measured
in samples per second.

Algorithm methods

This algorithm’s main classes are AppDemo and PriceStock. Class AppDemo defines method
runSerial, where all the parallelism and communication is performed and where the run
method from class PriceStock is called. The run method will generate a single sequence
with the required statistics, estimate its volatility, expected return rate and final stock price
value.

Algorithm parallelization

The principle loop over number of Monte Carlo runs can be easily parallelised by dividing
the work in a block fashion.

Each process will execute run method (from class PriceStock) with different tasks as argu-
ment, generating a single sequence with the required statistics and estimating its volatility,
expected return rate and final stock price value. The result of the computation will be stored
in p_results vector which will be sent to process rank 0.

Process rank 0 receives all the results and stores them in results vector.

Code 28 illustrates the main parallelization code.

The process interaction model used by this algorithm is usually called Farming.
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Code 28 Monte Carlo Simulation: algorithm parallelization
174 ilow = JGFMonteCarloBench.rank*p_nRunsMC;
175 ihigh = (JGFMonteCarloBench.rank+1)*p_nRunsMC;
176 if (JGFMonteCarloBench.rank==JGFMonteCarloBench.nprocess-1) ihigh = nRunsMC;
177
178 // Now do the computation.
179 PriceStock ps;
180 for( int iRun=ilow; iRun < ihigh; iRun++ ) {
181 ps = new PriceStock();
182 ps.setInitAllTasks(initAllTasks);
183 ps.setTask(tasks.elementAt(iRun));
184 ps.run();
185 p_results[0].addElement(ps.getResult());
186 }
187
188 if(JGFMonteCarloBench.rank==0) {
189 for(int i=0;i<p_results[0].size();i++){
190 results.addElement((ToResult) p_results[0].elementAt(i));
191 }
192 for(int j=1;j<JGFMonteCarloBench.nprocess;j++) {
193 p_results[0].removeAllElements();
194 MPI.COMM_WORLD.Recv(p_results,0,1,MPI.OBJECT,j,j);
195 for(int i=0;i<p_results[0].size();i++){
196 results.addElement((ToResult) p_results[0].elementAt(i));
197 }
198
199 }
200
201 } else {
202
203 MPI.COMM_WORLD.Send(p_results,0,1,MPI.OBJECT,0,JGFMonteCarloBench.rank);
204
205 }
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A.2.3. 3D Ray Tracer

Algorithm description

Ray tracing is a general technique from geometrical optics of studying the path taken by light
by following rays of light as they interact with optical surfaces. Its primary applications are
in 3D computer graphics, where scenes are rendered by following rays from the eyepoint to
light sources, and in the design of optical systems, such as lenses and mirrors.12

The JGF benchmark measures the performance of a 3D ray tracer. The rendered scene
contains 64 spheres, and is rendered at a resolution of N × N pixels. Performance units are
pixels per second.

Algorithm methods

Raytracer benchmark depends on the following classes:

JGFRayTracerBench - this is the control class;

RayTracer - this is the main class. The most important method is render which receives a
Interval object and launches a ray of light for each point that belongs to the interval,
calling method trace. trace method calculates light intersections with the scene and
then it calls shade method to determine the shaded color. shade method calls trace
method to calculate indirect light influence;

Primitive - this abstract class defines abstract methods for primitives, like spheres;

Interval - this class represents the interval for which the image is rendered; it looks
overkill, but it’s a good approach to distribute the algorithm;

Isect - this class represents intersections;

Light - this class represents light points;

Ray - this class represents rays of light;

Scene - this class represents the scene. It has methods to manipulate the scene objects
and lights;

Sphere - this class represents spheres; it is subclass of Primitive

Surface - this class represents surfaces (their color, shine and other properties);

12Wikipedia definition
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View - this class represents view points;

The main method of this algorithm is render (in class RayTracer, line 186) where all the
parallelism and communication is performed.

Algorithm parallelization

The outermost loop (over row of pixels) in the method render has been parallelised using
a cyclic distribution for load balance. Since each interval point can be calculated indepen-
dently, each iteration of the loop can be distributed between processes. Interval class
looks a bad approach for sequential versions, but is very useful for the parallel version.

Code 29 shows the loop responsible for distribution and load balancing.

Code 29 Raytracer: data partition
239 for( y = interval.yfrom+JGFRayTracerBench.rank;

y < interval.yto;
y += JGFRayTracerBench.nprocess) {

...

270 }

Each process creates the scene to be rendered and produces image rows in a cyclic fashion,
as figure 23 shows.

All the processes create a p_row variable to hold the image rows. This creation is done in
the line 193 (Code 30).

Code 30 Raytracer: partial results
193 if(JGFRayTracerBench.rank==0){
194 row = new int[interval.width * (interval.yto-interval.yfrom)];
195 }

197 int p_row[] = new int[((((interval.width *
(interval.yto-interval.yfrom))
/interval.width) +
JGFRayTracerBench.nprocess-1) /
JGFRayTracerBench.nprocess)*interval.width];

Processes different from rank 0 send their computed image rows (p_row array) to process
rank 0 which merges them in row variable. Code 31 shows how this behaviour is pro-
grammed.

Each process calculates a checksum value, which is used to validate the algorithm. AllReduce
primitive is used to update this value making a global sum on checksum, as code 32 shows.

The process interaction model used by this algorithm is usually called Farming.
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Figure 23: Data distribution and load balancing in raytracer algorithm

Code 31 Raytracer: data merging
282 if(JGFRayTracerBench.rank==0) {
283 for(int k=0;k<JGFRayTracerBench.nprocess;k++){
284 if(k!=0){
285 MPI.COMM_WORLD.Recv(p_row,0,p_row.length,MPI.INT,k,k);
286 }
287 t_count = 0;
288 for(int i = k;

i < (interval.yto-interval.yfrom);
i+=JGFRayTracerBench.nprocess){

289 for(x = 0; x < interval.width; x++) {
290 row[i*interval.width+x] = p_row[t_count];
291 t_count++;
292 }
293 }
294 }
295 } else {
296 MPI.COMM_WORLD.Send(p_row,0,p_row.length,

MPI.INT,0,JGFRayTracerBench.rank);
297 }

Code 32 Raytracer: validation
274 tmp_checksum[0] = (double) checksum;
275 MPI.COMM_WORLD.Reduce(tmp_checksum,0,tmp_checksum,0,

1,MPI.DOUBLE,MPI.SUM,0);
276 if(JGFRayTracerBench.rank==0) {
277 checksum = (long) tmp_checksum[0];
278 }
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B. Automatic object distribution implementation

B.1. Parser generators and related tools

This appendix describes the parser generators that were analyzed to implement the code
transformations explained in section 2.

B.1.1. ANTLR

URL: http://www.antlr.org
License: Public domain
Generated Language: Java
Java Grammar: Yes (Java 1.4 and 1.5)
Used by: Jade - a parallel message-drive Java;

BlueJ - an integrated Java environment specifically de-
signed for introductory teaching;
USFJProf - a Java profiling tool.

B.1.2. JavaCC

URL: http://javacc.dev.java.net
License: Berkeley Software Distribution (BSD) License
Generated Language: Java
Java Grammar: Yes (Java 1.4 and 1.5)
Used by: Xilize - a tool to help creating XHTML;

JPython - a tool that allows to run Python on any Java
platform.

B.1.3. CUP Parser Generator

URL: http://www.cs.princeton.edu/~appel/modern/
java/CUP/

License: GPL compatible
Generated Language: Java
Java Grammar: Yes (Java 1.5)
Used by:
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B.1.4. JParse

JParse is a parser, type evaluator, and exception analyzer for the Java language. It is a
freely redistributable library of Java code. It is based on ANTLR, builds an abstract syntax
tree (AST) and contains a tree parser to traverse the created trees.

URL: http://www.ittc.ku.edu/JParse
License: LGPL
Java Grammar: Yes (Java 1.4)

B.2. Frontend script

In order to simplify the source code transformation and the automatic object distribution we
have created a script that uses a configuration file where the following variables are defined:

ppc_manager_name - cluster manager name to register in the nameserver;

ppc_manager_host - host where the cluster manager runs;

nameserver_host - host where the nameserver runs;

nameserver_port - port where the nameserver listens;

ppc_nodes - list of nodes where remote objects can be created;

The script is run from command line and can be seen as a frontend for several tools. It
provides the following options:

pre <files> - transforms the specified files and generates support classes, as described in
Chapter 2;

rmic - generates stub and skeleton class files for remote objects; it determines automati-
cally which are the remote objects;

compile <files> - compiles the files given as argument, defining all the needed parameters;

start - starts the nameserver, the cluster manager and the factories;

stop - stops the nameserver, the cluster manager and the factories;

status - shows the system status (if it is ready to distribute objects);

flags - prints the Java options needed to use the nameserver.
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