The programmers of tomorrow

A recent article written by Dr. Robert B.K. Dewar and Dr. Edmond Schonberg (both from AdaCore Inc.) is generating some discussion on the state of Computer Science (CS) education in the United States. In “Computer Science Education: Where Are the Software Engineers of Tomorrow?“, Dewar and Schonberg claim that U.S. universities are training unqualified and easily replaceable programmers.

“It is our view that Computer Science (CS) education is neglecting basic skills, in particular in the areas of programming and formal methods. We consider that the general adoption of Java as a first programming language is in part responsible for this decline. We examine briefly the set of programming skills that should be part of every software professional’s repertoire.”

The comment about Java’s adoption annoyed some Java aficionados, but in a recent interview, Robert Dewar adds that the problem goes far beyond the choice of Java as the first programming language. The real problem is that CS programs are being dumbed down, so that they become more accessible and popular. In result, they “are not rigorous enough and don’t promote in-depth thinking and problem solving”.

“A lot of it is, ‘Let’s make this all more fun.’ You know, ‘Math is not fun, let’s reduce math requirements. Algorithms are not fun, let’s get rid of them. Ewww – graphic libraries, they’re fun. Let’s have people mess with libraries. And [forget] all this business about ‘command line’ – we’ll have people use nice visual interfaces where they can point and click and do fancy graphic stuff and have fun.”

Although the paper is concerned with the American reality, I believe we have the same problem in Europe — at least, and as far as I know, in the UK and in Portugal. However, in my opinion, the problem starts before university. The maths’s programs in secondary schools are also being simplified (or dumbed down, if you prefer) and many important concepts, like logic and proofs, are being ignored.

In result, first-year students usually have a poor background on maths and problem solving. In fact, most of them have never seen a proof and don’t even understand the importance of mathematical reasoning. With poor reasoning abilities, they become intellectually less curious, accepting things as they are presented, and they have tremendous difficulties creating new algorithms, or convincing someone that their own algorithms are correct.

Moreover, once they are in the university, one of two things happens:

  1. they are not taught explicitly how to solve problems or how to derive algorithms from their formal specifications (this is the most common case);
  2. or they are taught the above skills but their poor background doesn’t allow them to fully appreciate these subjects.

Continue reading

Related Posts:

How to be more confident about your own programs: an example using Perl

Programming is one of the most difficult branches of applied mathematics; the poorer mathematicians had better remain pure mathematicians.

Perl Camel

It was Edsger W. Dijkstra, the famous computer scientist, who wrote these words in his note named “How do we tell truths that might hurt?“. I am sure that many people didn’t like to read them, and didn’t understand what he meant.

Although it is not my intention to discuss his words, I want to present a simple example that demonstrates how mathematics can be used to program better and to make you more confident about your own programs.

This post includes a fair amount of mathematical definitions and concepts, but they should not be difficult to understand. After the mathematical discussion, I present an example using the Perl programming language (it also applies to languages like C or Java).

The Problem

The problem I am going to deal with, involves the ceiling and floor functions. If you don’t remember, the floor of a real number $x$ is (usually) written as $\lfloor{}x\rfloor$ and it is defined as the greatest integer that is at most $x$. Similarly, the ceiling of a real number $x$ is written as $\lceil{}x\rceil$ and it is defined as the smallest integer that is at least $x$.

The goal is to implement the ceiling function supposing that our programming language only provides the floor function to round numbers. Formally, given a real $x$, we want to calculate an expression $e$ such that:

\lceil{}x\rceil = \lfloor{}e\rfloor ~~.

Continue reading

Related Posts:

Swapping the values of two variables

In my previous post I have promised that I would put here some of my technical notes (JFFs). Today I am posting JFF1, which presents a very well-known problem in a non-traditional way. The problem is how to swap the values of two variables without using another temporary one.

I start by presenting the properties involved in the traditional solution and then I generalize it for arbitrary operators. I finish the note with a simple refinement. If you have any nice example instantiation for the last set of assumptions, I would be glad to know it. Other than that, comments or corrections are more than welcome!

The note is only available in PDF. Click the following link to get it:

JFF1 – Swapping the value of two variables

Related Posts:

I am still alive!

That’s true: the last post was exactly 5 months ago, but I’m still alive! A lot of new stuff happened during these 5 months. Two days after writing the last post, I went with my group (Foundations of Programming) to a very nice hotel in Ruddington, where, during two days, each member had to present something about his/her work. I’ve talked about a result I’ve derived related with distributivity through the Greatest Common Divisor. My slides are available at the event’s webpage and I will put online a note with all the details.

A few days later Alexandra got ill with some strange pain in the abdominal area. The following weeks were really hard, since she had to go to the hospital emergency services. So that you have an idea of how strange the whole thing was, the doctors still don’t know what the problem is! Now, she has occasional pain, but it seems to be much more controlled.

Anyway, more or less at the same time I started to read a very nice article (a Functional Pearl) written by Jeremy Gibbons, Richard Bird and David Lester named “Enumerating the Rationals“. The paper presents some algorithms encoded in Haskell to enumerate the positive rational numbers. In particular, it presents algorithms to construct the famous Stern-Brocot and Calkin-Wilf trees. It also presents a very efficient algorithm to enumerate the rationals in Calkin-Wilf order just by using as current state the previous rational (i.e., two integer numbers). However, the authors claim that “it is not at all obvious” how to create a similar efficient algorithm for enumerating the rationals in Stern-Brocot order. Well, after reading it, Roland (my supervisor) and me found a way of doing it. The key idea is that rational numbers are pairs of coprime numbers (numbers which greatest common divisor is 1) and thus, we can use Euclid’s algorithm as a basis for enumerating these pairs. By using the Extended Euclid’s algorithm written using matrix multiplication, we were able to derive both Calkin-Wilf and Stern-Brocot enumerations from the same algorithm. We wrote a paper named “Recounting the Rationals: Twice!” that was submitted to the journal American Mathematical Monthly.

Continue reading

Related Posts:

On Programming and Mathematical Methodology — Part II

In the last post I have presented some historical context about programming and mathematical methodology. If you read it, then you should have an idea when and why programmers started to investigate on mathematical methodology. However, I haven’t mentioned any aspects of mathematical methodology that can help us to improve our programming or mathematical skills.

In this post, I’ll talk about mathematical proofs. And what’s the relevance of this topic to programmers? Well, computer programs are mathematical formulae, with a precise formal meaning and embodying constructive theorems about the systems they implement (as well-written in “Mathematics and Programming – A Revolution in the Art of Effective Reasoning”, by Roland Backhouse). The difference between theorems embodied by computer programs and the ones usually studied in mathematics is that they are applied by an unforgiving machine, with the effect that the smallest error can cause a huge damage. This means that computer programmers must create trustworth designs, i.e., the constructive theorems embodied by their programs must be programmed correctly.

Mathematical Proofs

Mathematicians job is to do mathematics, i.e., to design and present theorems, arguments, algorithms and in some cases whole theories. However, the traditional mathematical curriculum is more concerned with teaching mathematical facts — existing theories and concepts — than with the doing of mathematics. And even when design and presentation get some attention, they are treated separately: design of solutions is viewed as a psychological issue, while presentation is viewed as a matter of personal style (words from this Dijkstra’s note on Mathematical Methodology).
Continue reading

Related Posts: